If your solution to stated problem does not match the given solution, you should self-critique per instructions at

 

   http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution.  If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it.  This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

At the end of this document, after the qa problems (which provide you with questions and solutions), there is a series of Questions, Problems and Exercises

query_10_2

Question: Find both F' and F'' for F(t) = (4sin^2 t)i + (9cos^2 t)j + tk

Your solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence rating:
 

Given Solution

 

Self-critique (if necessary):

 

 

 

 

 

 

 

 

 

 

Self-critique rating:

 

Question:  Given the position vector of a particle R(t) = (cos t)i + tj + (4 sin t)k, find the particle's velocity and acceleration vectors and then find the speed and direction of the particle at t = pi/2.

Your solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence rating:
 

Given Solution

 

Self-critique (if necessary):

 

 

 

 

 

 

 

 

 

 

Self-critique rating:

 

Question:  Find Int(<sin t, cos t, t^2> dt) (Where Int( f(t) dt) is the integral of f with respect to t)

Your solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence rating:
 

Given Solution

 

Self-critique (if necessary):

 

 

 

 

 

 

 

 

 

 

Self-critique rating:

 

Question:  Find Integral((e^t)*<t,4t^2,sin t> dt)

Your solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence rating:
 

Given Solution

 

Self-critique (if necessary):

 

 

 

 

 

 

 

 

 

 

Self-critique rating:

 

Question:  Find the velocity and position vectors given the acceleration vector `A(t) = 4(t^2)i - 2 sqrt(t) j + 5(e^3t)k, initial position R(0) = 2i + j -3k and initial velocity v(0) = 4i + j + 2k.

Your solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence rating:
 

Given Solution

 

Self-critique (if necessary):

 

 

 

 

 

 

 

 

 

 

Self-critique rating:

 

Question:  F(t) = e^(-kt)i + e^(kt)k. Show that F and F'' are parallel.

 

Your solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence rating:
 

Given Solution

 

Self-critique (if necessary):

 

 

 

 

 

 

 

 

 

 

Self-critique rating:

 

Question: