Calculus II

Class Notes, 2/01/99


We integrate the arcsin function using integration by parts.

cal01.jpg (20455 bytes)

We integrate x / [ (x+5)^2 + 1] using the substitution u = x + 5.

cal02.jpg (20455 bytes)

Video Clip #01

We integrate x^4 e^(-3x) using the table, recognizing that our form is that of the integral of p(x) e^(ax).

cal03.jpg (20455 bytes)

 

Video Clip #02

To use the table for the integral of u^5 ln(5u) we first make  the substitution x = 5u, obtaining a multiple of the integral of x^5 ln x.

cal04.jpg (20455 bytes)

To integrate 1/ sin^2(5`theta) we first substitute u = 5 `theta, obtaining a multiple of the integral of du / sin^2(u).

cal05.jpg (20455 bytes)

Video Clip #03

The instructions in the text table for integrating sin^m (x) * cos^n (x) say that when m is positive and n negative we expand the denominator using cos^2 (x) = 1 - sin^2 (x).

cal06.jpg (20455 bytes)

To integrate sin^3 (3 `theta) cos^4 (3`theta) we first substitute u = 3 `theta as shown.

cal07.jpg (20455 bytes)

Video Clip #04