course Phy 121 017. `query 17 Question: `qprin phy and gen phy 6.33: jane at 6.3 m/s; how high can she swing up that vine?
.............................................
Given Solution: Outline of solution: Jane has KE. She goes higher by increasing her gravitational PE. Her KE is 1/2 m v_0^2, where m is her mass and v0 is her velocity (in this case, 6.3 m/s^2). If she can manage to convert all her KE to gravitational PE, her KE will decrease to 0 (a decrease of 1/2 m v0^2) and her gravitational PE will therefore increase by amount 1/2 m v_0^2. The increase in her gravitational PE is m g `dy, where m is again her mass and `dy is the increase in her altitude. Thus we have PE increase = KE loss In symbols this is written m g `dy = 1/2 m v0^2. The symbol m stands for Jane's mass, and we can also divide both sides by m to get g `dy = 1/2 v0^2. Since we know g = 9.8 m/s^2 and v0 = 6.3 m/s, we can easily find `dy. `dy = v0^2 / g which is easily evaluated to obtain `dy = 1.43 m. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I did the calculations and I didn’t get this answer??
.............................................
Given Solution: `a We being with a few preliminary observations: • We will assume here that the gravitational PE of the system is zero at the point where the spring is compressed. In this situation we must consider changes in both elastic and gravitational PE, and in KE. • We also observe that no frictional or other nonconservative forces are mentioned, so we assume that nonconservative forces do no work on the system. • It follows that `dPE + `dKE = 0, so the change in KE is equal and opposite to the change in PE. The PE stored in the spring will be .5 k x^2 = .5 ( 950 N/m ) ( .150 m)^2 = 10.7 J. Since the ball is moving in the vertical direction, between the release of the spring and the return of the spring to its equilibrium position, the ball has a change in gravitational PE as well as elastic PE. • The change in elastic PE is -10.7 J, and the change in gravitational PE is m g `dy = .30 kg * 9.8 m/s^2 * .150 m = +.44 J. • The total change in PE is therefore -10.7 J + 4.4 J = -10.3 J. Summarizing what we know so far: • Between release and the equilibrium position of the spring, `dPE = -10.3 J During this interval, the KE change of the ball must therefore be `dKE = - `dPE = - (-10.3 J) = +10.3 J. Intuitively, the ball gains in the form of KE the 10.3 J of PE lost by the system. The initial KE of the ball is 0, so its final KE during its interval of contact with the spring is 10.3 J. We therefore have • .5 m v^2 = KEf so that • vf=sqrt(2 KEf / m) = sqrt(2 * 10.3 J / .30 kg) = 8.4 m/s. To find the max altitude to which the ball rises, we consider the interval between release of the spring and maximum height. • At the beginning of this interval the ball is at rest so it has zero KE, and the spring has 10.7 J of elastic PE. • At the end of this interval, when the ball reaches its maximum height, the ball is again at rest so it again has zero KE. The spring also has zero PE, so all the PE change is due to the gravitational force encountered while the ball rises. • Thus on this interval we have `dPE + `dKE = 0, with `dKE = 0. This means that `dPE = 0. There is no change in PE. Since the spring loses its 10.7 J of elastic PE, the gravitational PE must increase by 10.7 J. • The change in gravitational PE is equal and opposite to the work done on the ball by gravity as the ball rises. The force of gravity on the ball is m g, and this force acts in the direction opposite the ball's motion. Gravity therefore does negative work on the ball, and its gravitational PE increases. If `dy is the ball's upward vertical displacement, then the PE change in m g `dy. • Setting m g `dy = `dPE we get `dy = `dPE / (m g) = 10.7 J / ( .30 kg * 9.8 m/s^2) = 10.7 J / (2.9 N) = 10.7 N * m / (2.9 N) = 3.7 meters. Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK "