Open Query 34

#$&*

course Phy 121

034. `query 34*********************************************

Question: `q Query Class Notes #33 Why do we say that a pendulum obeys a linear restoring force law F = - k x for x small compared to pendulum length?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: T=mg/costheta vertically and T=mg*tantheta horizontally.

Angles are small and tantheta is almost equal to theta thus mgtheta becomes the formula.

Theta=x/L thus F=(m*g/L)*x

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The vertical component of the tension in the string is equal to the weight m * g of the pendulum. At angle `theta from equilibrium we have T cos(`theta) = m * g so T = m * g / cos(`theta).

The horizontal component of the tension is the restoring force. This component is T sin(`theta) = m * g * sin(`theta) / cos(`theta) = m * g * tan(`theta).

For small angles tan(`theta) is very close to `theta, assuming `theta to be in radians.

Thus the horizontal component is very close to m * g * `theta.

The displacement of the pendulum is L * sin(`theta), where L is pendulum length. Since for small angles sin(`theta) is very close to `theta, we have for small displacements x = displacement = L * `theta.

Thus for small displacements (which implies small angles) we have to very good approximation:

displacement = x = L `theta so that `theta = x / L, and

restoring force = m * g * `theta = m * g * x / L = ( m*g/L) * x. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q What does simple harmonic motion have to do with a linear restoring force of the form F = - k x?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: If a constant mass isn’t in equilibrium it will undergo harmonic motion with omega=sqrt(k/m)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** the essential relationship is F = - k x; doesn't matter if it's a pendulum, a mass on an ideal spring, or any other system where net force is a negative constant multiple of the displacement from equilibrium.

For Principles of Physics and General College Physics students the following statement summarizes the relationship:

• If a constant mass m is subjected to a net force F = - k x, then if that mass is in equilibrium at x = 0 it will remain there.

• Otherwise it will undergo simple harmonic motion with angular frequency omega = sqrt( k / m ).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: For a simple harmonic oscillator of mass m subject to linear net restoring force F = - kx, what is the angular velocity `omega of the point on the reference circle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: omega= sqrt (k/m)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: omega= sqrt (k/m)

INSTRUCTOR COMMENT: Good. Remember that this is a very frequently used relationship for SHM, appearing in one way on another in a wide variety of problems.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q If the angular position of the point on the reference circle is given at clock time t by `theta = `omega * t, then what is the x coordinate of that point at clock time t?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: x=r*cos(omega*t)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since theta=omega t, if we know t we find that x = radius * cos(theta) or more specifically in terms of t

x = radius*cos(omega*t)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q Query introductory problem set 9, #'s 1-11 If we know the restoring force constant, how do we find the work required to displace the oscillator from its equilibrium position to distance x = A from that position? How could we use this work to determine the velocity of the object at its equilibrium position, provided we know its mass?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: KE=1/2mv^2=1/2kA^2

V=sqrt(k/m)*A

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** You can use the work 1/2 k A^2 and the fact that the force is conservative to conclude that the max PE of the system is 1/2 k A^2. This PE will have transformed completely into KE at the equilibrium point so that at the equilibrium point KE = .5 m v^2 = .5 k A^2. We easily solve for v, obtaining

v = `sqrt(k/m) * A. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q Query Add comments on any surprises or insights you experienced as a result of this assignment.

Some of the relationships I discovered surprised me.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

"

&#This looks good. Let me know if you have any questions. &#

#$&*