Initial Activities Calculus

#$&*

course Phy 202

006. Physics

*********************************************

Question: `q001. There are two parts to this problem. Reason them out using common sense.

If the speed of an automobile changes by 2 mph every second, then how long will it take the speedometer to move from the

20 mph mark to the 30 mph mark?

Given the same rate of change of speed, if the speedometer initially reads 10 mph, what will it read 7 seconds later?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It will take 5 seconds for the automobile to raise its speed from 20mph to 30mph at a rate of 2mph/sec.

2mph/sec * 7sec = 14mph increase; add the 14mph increase to the initial speed of 10mph for a speed of 24mph.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIt will take 5 seconds to complete the change. 30 mph - 20 mph = 10 mph change at 2 mph per second (i.e., 2 mph every

second) implies 5 seconds to go from 20 mph to 30 mph

Change in speed is 2 mph/second * 7 seconds = 14 mph Add this to the initial 10 mph and the speedometer now reads 24 mph.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q002. An automobile traveling down a hill passes a certain milepost traveling at a speed of 10 mph, and

proceeds to coast to a certain lamppost further down the hill, with its speed increasing by 2 mph every second. The time

required to reach the lamppost is 10 seconds.

It then repeats the process, this time passing the milepost at a speed of 20 mph. This time:

Will the vehicle require more or less than 10 seconds to reach the lamppost?

Since its initial speed was 10 mph greater than before, does it follow that its speed at the lamppost will be 10 mph

greater than before?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The first time the automobile travels down the hill it is goin 30mph when it reaches the lamppost. The automobile will

reach the lamppost in less than 10 seconds since it is already traveling at a greater speed and increasing speed at the

same amount as the first pass. The rate of speed increase is the same during both passes so the automobile should reach

the lampost traveling 10mph faster than its first pass.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIf it starts coasting down the same section of road at 20 mph, and if velocity changes by the same amount every second,

the automobile should always be traveling faster than if it started at 10 mph, and would therefore take less than 10

seconds.

The conditions here specify equal distances, which implies less time on the second run. The key is that, as observed

above, the automobile has less than 10 seconds to increase its speed. Since its speed is changing at the same rate as

before and it has less time to change it will therefore change by less.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I did not account for the higher rate of travel decreasing the amount of time it will take the automobile to pass the

lamppost. With less time to accelerate the automobile will not reach 10mph faster than its previous run.

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q003. The following example shows how we can measure the rate at which an automobile speeds up: If an

automobile speeds up from 30 mph to 50 mph as the second hand of a watch moves from the 12-second position to the 16-

second position, and its speed changes by 20 mph in 4 seconds. This gives us an average rate of velocity change equal to

20 mph / 4 seconds = 5 mph / second.

We wish to compare the rates at which two different automobiles increase their speed:

Which automobile speeds up at the greater rate, one which speeds up from 20 mph to 30 mph in five seconds or one which

speeds up from 40 mph to 90 mph in 20 seconds?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The first automobile velocity change is equal to 10mph/5sec = 2 mph/sec

The second automobile velocity change equal to 50mph/20sec = 2.5mph/sec. The second automobile increase of speed is greater than the first automobile.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The first automobile's speed changes from 20 mph to 30mph, a 10 mph difference, which occurs in 5 seconds. So the rate of

chage in 10 mph / (5 sec) = 2 mph / sec. = rate of change of 2 mph per second.

The second automobile's speed changes from 40 mph to 90 mph, a 50 mph difference in 20 seconds so the rate of change is 50

mph / (20 sec) = 2.5 mph per second.

Therefore, the second auto is increasing its velocity ar a rate which is .5 mph / second greater than that of the first.

Self-critique:

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q004. If an automobile of mass 1200 kg is pulled by a net force of 1800 Newtons, then the number of Newtons

per kg is 1800 / 1200 = 1.5. The rate at which an automobile speeds up is determined by the net number of Newtons per kg.

Two teams pulling on ropes are competing to see which can most quickly accelerate their initially stationary automobile to

5 mph. One team exerts a net force of 3000 Newtons on a 1500 kg automobile while another exerts a net force of 5000

Newtons on a 2000 kg automobile.

Which team will win and why?

If someone pulled with a force of 500 Newtons in the opposite direction on the automobile predicted to win, would the

other team then win?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3000N/1500kg = 2N/kg; 5000N/2000kg = 2.5N/kg The second team will win because the exert more force on the automobile.

4500N/2000kg = 2.25N/kg The 500N of force exerted in the opposite direction is not enough to decrease the rated below the first teams rate. The second team's rate is still greater by 0.25N/kg.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe first team's rate is 3000 Newtons divided by 1500 kg or 2 Newtons per kg, while the second team's rate is 5000

Newtons divided by 2000 kg or 2.5 Newtons per kg. The second team therefore increases velocity more quickly. Since both

start at the same velocity, zero, the second team will immediately go ahead and will stay ahead.

The second team would still win even if the first team was hampered by the 500 Newton resistance, because 5000 Newtons -

500 Newtons = 4500 Newtons of force divided by 2000 kg of car gives 2.25 Newtons per kg, still more than the 2 Newtons /

kg of the first team

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q005. Both the mass and velocity of an object contribute to its effectiveness in a collision. If a 250-lb

football player moving at 10 feet per second collides head-on with a 200-lb player moving at 20 feet per second in the

opposite direction, which player do you precidt will be moving backward immediately after the collision, and why?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

250lb*10ft/sec= 2500lb*ft/sec; 200lb*(20ft/sec)= 4000lb*ft/sec The smaller player moving twice as fast will knock the larger player backwards immediately after the collision because his mass moving twice as fast of the larger player will overcome the force of the larger players impact.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aGreater speed and greater mass both provide advantages. In this case the player with the greater mass has less speed, so

we have to use some combination of speed and mass to arrive at a conclusion.

It turns out that if we multiply speed by mass we get the determining quantity, which is called momentum. 250 lb * 10

ft/sec = 2500 lb ft / sec and 200 lb * 20 ft/sec = 4000 lb ft / sec, so the second player will dominate the collision.

In this course we won't use pounds as units, and in a sense that will become apparent later on pounds aren't even valid

units to use here. However that's a distinction we'll worry about when we come to it.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q006. Two climbers eat Cheerios for breakfast and then climb up a steep mountain as far as they can until they

use up all their energy from the meal. All other things being equal, who should be able to climb further up the mountain,

the 200-lb climber who has eaten 12 ounces of Cheerios or the 150-lb climber who has eaten 10 ounces of Cheerios?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

200lb/12oz= 16.667lb/oz; 150lb/10oz= 15lb/oz

The smaller climber will run out of energy before the larger climber. The larger climber needs 1.667 more ounces of food than the smaller climber needs to function. But the larger climber had 2 oz of food more than the smaller climber which will more than make up the difference in energy consumption.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe comparison we make here is the number of ounces of Cheerios per pound of body weight. We see that the first climber

has 12 oz / (200 lb) = .06 oz / lb of weight, while the second has 10 0z / (150 lb) = .067 oz / lb. The second climber

therefore has more energy per pound of body weight.

It's the ounces of Cheerios that supply energy to lift the pounds of climber. The climber with the fewer pounds to lift

for each ounce of energy-producing Cheerios will climb further.

STUDENT COMMENT

I am satisfied with how I worked out the problem, though it would be nice to know what formulas to use in case my instinct

is wrong. I should have got the energy used per pound by rereading the question.

INSTRUCTOR RESPONSE

There are two points to these problems:

1. You can go a long ways with common sense, intuition or instinct, and you often don't need formulas.

2. Common sense, intuition and instinct aren't the easiest things to apply correctly, and it's really easy to get things

turned around.

A corollary: When we do use formulas it will be important to understand them, as best we can, in terms of common sense and

experience.

Either way, practice makes the process easier, and one of the great benefits of studying physics is that we get the

opportunity to apply common sense in situations where we can get feedback by experimentally testing our thinking.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I did not calculate the number of ounces of cheerios per pound of body weight. I found the amount of body weight per ounce of cheerios which did not end up helping me solve the problem. When you find the number of ounces of cheerios per pound of body weight you can see that the second climber has more energy per pound of body weight.

@&

Good.

*@

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q007. Two automobiles are traveling up a long hill with an steepness that doesn't change until the top, which

is very far away, is reached. One automobile is moving twice as fast as the other. At the instant the faster automobile

overtakes the slower their drivers both take them out of gear and they coast until they stop.

Which automobile will take longer to come to a stop? Will that automobile require about twice as long to stop, more than

twice as long or less than twice as long?

Which automobile will have the greater average coasting velocity? Will its average coasting velocity by twice as great as

the other, more than twice as great or less than twice as great?

Will the distance traveled by the faster automobile be equal to that of the slower, twice that of the slower or more than

twice that of the slower?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The faster automobile will take longer to come to a stop. Both cars are taken out of gear and allowed to coast until they stop so their decreasing rate of speed should be the same. Since the faster automobile is going twice as fast it should take that automobile twice as long to stop. The faster automobile will travel twice as far as the slower automobile.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIt turns out that, neglecting air resistance, since the slope is the same for both, both automobiles will change

velocity at the same rate. So in this case the second would require exactly twice as long.

If you include air resistance the faster car experiences more so it actually takes a bit less than twice as long as the

slower.

For the same reasons as before, and because velocity would change at a constant rate (neglecting air resistance) it would

be exactly twice as great if air resistance is neglected.

Interestingly if it takes twice as much time and the average velocity is twice as great the faster car travels four times

as far.

If there is air resistance then it slows the faster car down more at the beginning than at the end and the average

velocity will be a bit less than twice as great and the coasting distance less than four times as far.

STUDENT COMMENT: I do not understand why the car would go four times as far as the slower car.

INSTRUCTOR RESPONSE: The faster car takes twice as long to come to rest, and have twice the average velocity.

If the car traveled at the same average velocity for twice as long it would go twice as far.

If it traveled at twice the average velocity for the same length of time it would go twice as far.

However it travels at twice the average velocity for twice as long, so it goes four times as far.

STUDENT COMMENT:

it’s hard to know this stuff without having first discussed it in notes or read it in the book, or

have an equation handy. I guess this will all come with the class.

INSTRUCTOR RESPONSE

One purpose of this and similar exercises is to get students into the habit of thinking for themselves, as opposed to

imitating what they see done in a textbook. You're doing some good thinking. When you get to the text and other materials,

ideally you'll be better prepared to understand them as a result of this process.

This works better for some students than others, but it's beneficial to just about everyone.

STUDENT COMMENT

I understand, it seems as though it would be easier if there were formulas to apply. I used a little common sense on all

but

the last one. Reading the responses I somewhat understand the last one. ?????The problem doesn’t indicate the vehicle

travels twice the average velocity for twice as long. Should I have known that by reading the problem or should that have

become clear to me after working it some?????

INSTRUCTOR RESPONSE

You did know these things when you thought about the problem.

You concluded that the automobile would take twice as long to come to rest, and that it would have twice the coasting

velocity. You just didn't put the two conclusions together (don't feel badly; very few students do, and most don't get as

close as you did).

You should now see how your two correct conclusions, when put together using common sense, lead to the final conclusion

that the second automobile travels four times as far.

No formula is necessary to do this. In fact if students are given a formula, nearly all will go ahead and use it without

ever thinking about or understanding what is going on.

In this course we tend to develop an idea first, and then summarize the idea with one or more formulas. Once we've

formulated a concept, the formula gives us a condensed expression of our understanding. The formula then becomes a means

of remembering the ideas it represents, and gives us a tool to probe even more deeply into the relationships it embodies.

There are exceptions in which we start with a formula, but usually by the time we get to the formula we will understand,

at least to some extent, what it's about.

I suppose this could be put succinctly as 'think before formulating'.

STUDENT COMMENT

I feel that I did decent on the problem, but I am the student that likes to have formulas. Your insight has opened my eyes

to a different way of looking at this problem. I like the comment “Think before Formulate”

INSTRUCTOR RESPONSE

Your solution was indeed well thought out.

I should probably add another comment:

'Think after formulating.'

Formulas are essential, but can't be applied reliably without the thinking, which should come first and last.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

The faster care is moving twice as fast and increasing at twice the velocity so the faster car will travel four times as far.

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q008. When a 100 lb person hangs from a certain bungee cord, the cord stretches by 5 feet beyond its initial

unstretched length. When a person weighing 150 lbs hangs from the same cord, the cord is stretched by 9 feet beyond its

initial unstretched length. When a person weighing 200 lbs hangs from the same cord, the cord is stretched by 12 feet

beyond its initial unstretched length.

Based on these figures, would you expect that a person of weight 125 lbs would stretch the cord more or less than 7 feet

beyond its initial unstretched length?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

5ft/100lb= .05ft/lb; 9ft/150lb= .06ft/lb; 12ft/200lb=.06ft/lb.

I can not see any pattern. But I would guess that a 125lb person would stretch the rope less than 7feet beyond its initial unstretched length.

confidence rating #$&*:0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aFrom 100 lbs to 150 lbs the stretch increased by 4 feet, from 150 lbs to 200 lbs the increase was only 3 feet. Thus it

appears that at least in the 100 lb - 200 lb rands each additional pound results in less increase in length than the last

and that there would be more increase between 100 lb and 125 lb than between 125 lb and 150 lb. This leads to the

conclusion that the stretch for 125 lb would be more than halfway from 5 ft to 9 ft, or more than 7 ft.

A graph of stretch vs. weight would visually reveal the nature of the nonlinearity of this graph and would also show that

the stretch at 125 lb must be more than 7 feet (the graph would be concave downward, or increasing at a decreasing rate,

so the midway stretch would be higher than expected by a linear approximation).

STUDENT COMMENT

I feel like I nailed this one. Probably just didn’t state things very clearly.

INSTRUCTOR RESPONSE

You explanation was very good.

Remember that I get to refine my statements, semester after semester, year after year. You get one shot and you don't have

time to hone it to perfection (not to say that my explanations ever achieve that level).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

The 100-150lb range seems to stretch more. Therefore my assumption was wrong. A 125 person would stretch the rope slightly longer that 7 ft, which is the median between a 5 and 9 ft stretch.

------------------------------------------------

Self-critique Rating:2

*********************************************

Question: `q009. When given a push of 10 pounds, with the push maintained through a distance of 4 feet, a certain ice

skater can coast without further effort across level ice for a distance of 30 feet. When given a push of 20 pounds (double

the previous push) through the same distance, the skater will be able to coast twice as far, a distance of 60 feet. When

given a push of 10 pounds for a distance of 8 feet (twice the previous distance) the skater will again coast a distance of

60 feet.

The same skater is now accelerated by a sort of a slingshot consisting of a bungee-type cord slung between two posts in

the ice. The cord, as one might expect, exerts greater and greater force as it is pulled back further and further. Assume

that the force increases in direct proportion to pullback (ie.g., twice the pullback implies twice the force).

When the skater is pulled back 4 feet and released, she travels 20 feet. When she is pulled back 8 feet and released, will

she be expected to travel twice as far, more than twice as far or less than twice as far as when she was pulled back 4

feet?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The sketer is pulled back 8 feet which should double the distance. The force of the sling shot should is twice as much so that should double the distance also which would make the skater travel 4 times as far.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe distance through which the force acts will be twice as great, which alone would double the distance; because of the

doubled pullback and the linear proportionality relationship for the force the average force is also twice as great, which

alone would double the distance. So we have to double the doubling; she will go 4 times as far

STUDENT COMMENT: I do not understand the linear proportionality relationship for the force.

If the skater is pulled back an extra four feet, does that mean that the amount of pounds propelling her is also doubled?

INSTRUCTOR COMMENT: That is so. However the force propelling her isn't the only thing that influences how far she slides.

The distance through which the force is applied is also a factor.

Doubling the force alone would double the sliding distance.

Doubling the distance through which the force is applied would double the sliding distane.

Doubling both the applied force and the distance through which it is applied quadruples the sliding distance.

STUDENT SOLUTION AND QUESTION

She should travel three times as far. The first four feet pulled back yield 20 feet of travel. The second four feet (i.e.,

feet 5 through 8) will propel her with twice the force as the first four feet. So this interval, by itself, would propel

her 40 feet. The 20 feet of the first four-foot interval plus the 40 feet of the second four-foot interval is 60 feet

total.

But wouldn’t it be the case that by the time the slingshot reaches the four-foot position, the force exerted on the skater

would only be half of that exerted when she was eight feet out? I understand why it would be a multiplier of four if the

force were the same throughout, but I’m assuming that the force will decrease as the slingshot is contracts.

I would appreciate help with this question. Thanks.

INSTRUCTOR RESPONSE

The average force for the entire 8-foot pull would be double the average force for the 4-foot pull. At this point we

don't want to get too mathematical so we'll stick to a numerical plausibility argument. This argument could be made

rigorous using calculus (just integrate the force function with respect to position), but the numerical argument should be

compelling:

Compare the two pulls at the halfway point of each. For a convenient number assume that the 4-foot pull results in a force

of 100 lb. Then the 8-foot pull will therefore exert a force of 200 lb.

When released at the 4-foot mark, the skater will be halfway back at the 2-foot mark, where she will experience a 50-lb

force.

When released at the 8-foot mark, the skater will be halfway back at the 4-foot mark, where she will experience a 100-lb

force.

Since the force is proportional to pullback, the halfway force is in fact the average force.

Note that during the second 4 ft of the 8 ft pull the force goes from 100 lb to 200 lb, so the average force for the

second 4 ft is 150 lb, three times as great as the average force for the first 4 ft. The max force for the second 4 ft is

double that of the first 4 ft, but the second 4 ft starts out with 100 lbs of force, while the first 4 ft starts out with

0 lbs.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q010. Two identical light bulbs are placed at the centers of large and identically frosted glass spheres, one

of diameter 1 foot and the other of diameter 2 feet.

To a moth seeking light from half a mile away, unable to distinguish the difference in size between the spheres, will the

larger sphere appear brighter, dimmer or of the same brightness as the first?

To a small moth walking on the surface of the spheres, able to detect from there only the light coming from 1 square inch

of the sphere, will the second sphere appear to have the same brightness as the first, twice the brightness of the first,

half the brightness of the first, more than twice the brightness of the first, or less than half the brightness of the

first?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The larger diameter lightbulb will emit a larger area of light and will appear brighter to the moth. The moth walking along the surface of the spheres is right on top of the light source. The larger light source will appear twice as bright due to doubling the amount of light coming through.

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aBoth bulbs send out the same energy per second. The surface of the second bulb will indeed be dimmer than the first, as

we will see below. However the same total energy per second reaches the eye (identically frosted bulbs will dissipate the

same percent of the bulb energy) and from a great distance you can't tell the difference in size, so both will appear the

same. The second sphere, while not as bright at its surface because it has proportionally more area, does have the extra

area, and that exactly compensates for the difference in brightness. Specifically the brightness at the surface will be

1/4 as great (twice the radius implies 4 times the area which results in 1/4 the illumination at the surface) but there

will be 4 times the surface area.

Just as a 2' x 2' square has four times the area of a 1' x 1' square, a sphere with twice the diameter will have four

times the surface area and will appear 1 / 4 as bright at its surface. Putting it another way, the second sphere

distributes the intensity over four times the area, so the light on 1 square inch has only 1 / 4 the illumination.

STUDENT COMMENT: I understand the first part of the problem about the distances. But the second part really confuses me.

Looking straight down from the top of the spheres, the bulb is the same intensity and the frosted glass is exactly the

same, so why would it seem dimmer? I would think that if a person was standing in front of the spheres, that person would

be able to tell a difference, but not extremely close.

INSTRUCTOR RESPONSE: Imagine a light bulb inside a frosted glass lamp of typical size. Imagine it outside on a dark

night. If you put your eye next to the glass, the light will be bright. Not as bright as if you put your eye right next to

the bulb, but certainly bright. The power of the bulb is spread out over the lamp, but the lamp doesn't have that large an

area so you detect quite a bit of light.

If you put the same bulb inside a stadium with a frosted glass dome over it, and put your eye next to the glass on a dark

night, with just the bulb lit, you won't detect much illumination. The power of the bulb is distributed over a much

greater area than that of the lamp, and you detect much less light.

STUDENT COMMENT:

I also didn’t get the second part of the question. I still don’t really see where the ¼ comes from.

INSTRUCTOR RESPONSE:

First you should address the explanation given in the problem:

'Just as a 2' x 2' square has four times the area of a 1' x 1' square, a sphere with twice the diameter will have four

times the surface area and will appear 1 / 4 as bright at its surface. Putting it another way, the second sphere

distributes the intensity over four times the area, so the light on 1 square inch has only 1 / 4 the illumination. '

Do you understand this explanation?

If not, what do you understand about it and what don't you understand?

This simple image of a 2x2 square being covered by four 1x1 squares is the most basic reason the larger sphere has four

time the area of the smaller.

There is, however, an alternative explanation in terms of formulas:

The surface area of a sphere is 4 pi r^2.

If r is doubled, r^2 increases by factor 2^2 = 4.

So a sphere with double the radius has four time the area.

If the same quantity is spread out over the larger sphere, it will be 1/4 as dense on the surface.

STUDENT COMMENT:

I also have no clue why the extra area doesn’t take away some brightness.

INSTRUCTOR RESPONSE:

All the light produced by the bulb is passing through either of the spheres. From a distance you see all the light,

whichever sphere you're looking at; you see just as much light when looking at one as when looking at the other.

From a distance you can't tell whether you're looking at the sphere with larger area but less intensity at its surface, or

the sphere with lesser area and greater intensity at its surface.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

The second bulb will be dimmer than the first because of the distance the light travels. When the moth is right on top of the spere the larger area of light will seem brighter by less than half.

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q011. The water in a small container is frozen in a freezer until its temperature reaches -20 Celsius. The

container is then placed in a microwave oven, which proceeds to deliver energy at a constant rate of 600 Joules per

second. After 10 seconds the ice is still solid and its temperature is -1 Celsius. After another 10 seconds a little bit

of the cube is melted and the temperature is 0 Celsius. After another minute most of the ice is melted but there is still

a good bit of ice left, and the ice and water combination is still at 0 Celsius. After another minute all the ice is

melted and the temperature of the water has risen to 40 degrees Celsius.

Place the following in order, from the one requiring the least energy to the one requiring the most:

Increasing the temperature of the ice by 20 degrees to reach its melting point.

Melting the ice at its melting point.

Increasing the temperature of the water by 20 degrees after all the ice melted.

At what temperature does it appear ice melts, and what is the evidence for your conclusion?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1.Increasing the temperature of the water by 20 degrees after all the ice melted.

2.Increasing the temperature of the ice by 20 degrees to reach its melting point.

3.Melting the ice at its melting point.

Ice melts at 0 degrees celsius, this is when a bit of the cube starts to melt.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since the temperature is the same when a little of the ice is melted as when most of it is melted, melting takes place at

this temperature, which is 0 Celsius.

The time required to melt the ice is greater than any of the other times so melting at 0 C takes the most energy. Since we

don't know how much ice remains unmelted before the final minute, it is impossible to distinguish between the other two

quantities, but it turns out that it takes less energy to increase the temperature of ice than of liquid water.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q012. Suppose you are in the center of a long, narrow swimming pool (e.g., a lap pool). Two friends with

kickboards, one at either end of the pool, are using them to push waves in your direction. Their pushes are synchronized,

and the crests of the waves are six feet apart as they travel toward you, with a 'valley' between each pair of crests.

Since your friends are at equal distances from you the crests from both directions always reach you at the same instant,

so every time the crests reach you the waves combine to create a larger crest. Similarly when the valleys meet you

experience a larger valley, and as a result you bob up and down further than you would if just one person was pushing

waves at you.

Now if you move a bit closer to one end of the pool the peak from that end will reach you a bit earlier, and the peak from

the other end will reach you a little later. So the peaks won't quite be reaching you simultaneously, nor will the

valleys, and you won't bob up and down as much. If you move far enough, in fact, the peak from one end will reach you at

the same time as the valley from the other end and the peak will 'fll in' the valley, with the result that you won't bob

up and down very much.

If the peaks of the approaching waves are each 6 inches high, how far would you expect to bob up and down when you are at

the center point?

How far would you have to move toward one end or the other in order for peaks to meet valleys, placing you in relatively

calm water?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

At the center point you should bob up and down one foot or twice the amount of six inches. You would have to move half the distance between you and one of the kickboards,3 feet, to be in a position where the peaks and valleys meet.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIf the two 6-inch peaks meet and reinforce one another completely, the height of the 'combined' peak will be 6 in + 6 in

= 12 in.

If for example you move 3 ft closer to one end you move 3 ft further from the other and peaks, which are 6 ft apart, will

still be meeting peaks. [ Think of it this way: If you move 3 ft closer to one end you move 3 ft further from the other.

This shifts your relative position to the two waves by 6 feet (3 feet closer to the one you're moving toward, 3 feet

further from the other). So if you were meeting peaks at the original position, someone at your new position would at the

same time be meeting valleys, with two peaks closing in from opposite directions. A short time later the two peaks would

meet at that point. ]

However if you move 1.5 ft the net 'shift' will be 3 ft and peaks will be meeting valleys so you will be in the calmest

water.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I did not think of the alternating peaks and valleys meeting every other pass at 3feet of distance difference. 1.5 feet of difference from the original position makes sure that you will meet a peak with a valley every time.

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q013. This problem includes some questions that are fairly straightfoward, some that involve more complicated

considerations, and possibly some that can't be answered without additional information.

We're hoping for some correct answers, but we expect that few students coming into this course will be able to think

correctly through every nuance of the more complex situations. On these questions we are hoping for your best thinking

without being particularly concerned with the final answer.

A steel ball and a wood ball are both thrown upward and, between release and coming to rest at maximum height, both rise

with the same average speed. If not for air resistance they would both come to rest at the same time, at the same height.

However air resistance causes the wood ball to stop rising more quickly than the steel ball.

Each ball, having risen to its maximum height, then falls back to the ground.

Which ball would you expect to have the greater average velocity as it falls?

Which ball would you expect to spend the greater time falling?

Which ball would you expect to hit the ground first?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The wood ball would have the greatest average velocity as it falls because it is heavier and that's why it stops rising more quickly. The steel ball is lighter and rises higher so it will therefore spend a greater amount of time falling. I would expect the wood ball to hith the ground first due to air resistance and the force of gravity.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q014. If you double the voltage across a certain circuit you double the current passing through it. The power

required to maintain the circuit is equal to the product of the current and the voltage. How many times as much power is

required if the voltage is doubled?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If you double the voltage and that doubles the current, the power required the cicuit would be 2current*2voltage. The power would be four times the power. If the voltage is doubled again the power would be 16 times the original power.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

------------------------------------------------

Self-critique Rating:"

@&

The question asked only about one doubling of the voltage, but if it is again doubled your reasoning is good throughout.

*@

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

@&

Good work, and good job with self-critiques.

*@