QA4

#$&*

course mth 163

6/21/12 9:50a

Question: `q001. Note that this assignment has 4 questions

If f(x) = x^2 + 4, then find the values of the following: f(3), f(7) and f(-5). Plot the corresponding points on a graph of y = f(x) vs. x. Give a good description of your graph.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

For f(3) = 3 ^2 + 4 = 13 or points (3,13)

For f(7) = 7 ^2 + 4 = 53 or point (7,53)

For f(-3) = (-3) ^2 + 4 = 29 or point (-3, 29)

I made a graph corresponding to the points there are just three unsymetrical points

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

f(x) = x^2 + 4. To find f(3) we replace x by 3 to obtain

f(3) = 3^2 + 4 = 9 + 4 = 13.

Similarly we have

f(7) = 7^2 + 4 = 49 + 4 = 53 and

f(-5) = (-5)^2 + 9 = 25 + 4 = 29.

Graphing f(x) vs. x we will plot the points (3, 13), (7, 53), (-5, 29). The graph of f(x) vs. x will be a parabola passing through these points, since f(x) is seen to be a quadratic function, with a = 1, b = 0 and c = 4.

The x coordinate of the vertex is seen to be -b/(2 a) = -0/(2*1) = 0. The y coordinate of the vertex will therefore be f(0) = 0 ^ 2 + 4 = 0 + 4 = 4. Moving along the graph one unit to the right or left of the vertex (0,4) we arrive at the points (1,5) and (-1,5) on the way to the three points we just graphed.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I didn't know that you wanted me to specify that it was a parabola or provide the basic points.

------------------------------------------------

Self-critique rating:

@&

The fact that it's a parabola is extra information provided in the given solution. The basic points are one way of describing the parabola so that you will recognize it. You aren't necessarily expected to have described it in these terms.

*@

*********************************************

Question: `q002. If f(x) = x^2 + 4, then give the symbolic expression for each of the following: f(a), f(x+2), f(x+h), f(x+h)-f(x) and [ f(x+h) - f(x) ] / h. Expand and/or simplify these expressions as appropriate.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If f(x) = x^2 + 4 then

f(a) = a^2 + 4

f(x+2) = (x + 2) ^2 + 4 = x^2 + 4x +8

f(x + h) = (x + h) ^2 + 4 = x^2 + 2xh + h^2 + 4

f(x + h) - f(x) = (x^2 + 2xh + h^2 + 4) - (x^2 + 4) = 2xh + h^2

[f(x + h) - f(x)] / h = [(x^2 + 2xh + h^2 + 4) - (x^2 + 4)] / h = [2xh + h^2] / h = 2x + h

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If f(x) = x^2 + 4, then the expression f(a) is obtained by replacing x with a:

f(a) = a^2 + 4.

Similarly to find f(x+2) we replace x with x + 2:

f(x+2) = (x + 2)^2 + 4, which we might expand to get (x^2 + 4 x + 4) + 4 or x^2 + 4 x + 8.

To find f(x+h) we replace x with x + h to obtain

f(x+h) = (x + h)^2 + 4 = x^2 + 2 h x + h^2 + 4.

To find f(x+h) - f(x) we use the expressions we found for f(x) and f(x+h):

f(x+h) - f(x) = [ x^2 + 2 h x + h^2 + 4 ] - [ x^2 + 4 ] = x^2 + 2 h x + 4 + h^2 - x^2 - 4 = 2 h x + h^2.

To find [ f(x+h) - f(x) ] / h we can use the expressions we just obtained to see that

[ f(x+h) - f(x) ] / h = [ x^2 + 2 h x + h^2 + 4 - ( x^2 + 4) ] / h = (2 h x + h^2) / h = 2 x + h.

You should have written these expressions out, and the following should probably be represented on your paper in form similar to that given here:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q003. If f(x) = 5x + 7, then give the symbolic expression for each of the following: f(x1), f(x2), [ f(x2) - f(x1) ] / ( x2 - x1 ). Note that x1 and x2 stand for subscripted variables (x with subscript 1 and x with subscript 2), not for x * 1 and x * 2. x1 and x2 are simply names for two different values of x. If you aren't clear on what this means please ask the instructor.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If f(x) = 5x +7 then

f(x1) = 5x1 + 7

f(x2) = 5x2 + 7

[f(x2) - f(x1)] / (x2 - x1) = [5x2 + 7 - 5x1 + 7] / (x2 - x1) = 14

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Replacing x by the specified quantities we obtain the following:

f(x1) = 5 * x1 + 7,

f(x2) = 5 * x2 + 7,

[ f(x2) - f(x1) ] / ( x2 - x1) = [ 5 * x2 + 7 - ( 5 * x1 + 7) ] / ( x2 - x1) = [ 5 x2 + 7 - 5 x1 - 7 ] / (x2 - x1) = (5 x2 - 5 x1) / ( x2 - x1).

We can factor 5 out of the numerator to obtain

5 ( x2 - x1 ) / ( x2 - x1 ) = 5.

Compare what you have written down with the expressions below:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

??? I don't understand why we don't cancel the top from the bottom in the equation [ 5 x2 + 7 - 5 x1 - 7 ] / (x2 - x1). To give us [5 + 7 - 5 + 7]= 14????

------------------------------------------------

Self-critique rating:

@&

In 'cancellation' you divide a factor of the numerator by a factor of the denominator.

x2, for example, is not a factor of either the numerator or the denominator. That is, you can't factor x2 out of either. Similarly for x1.

*@

*********************************************

Question: `q004. If f(x) = 5x + 7, then for what value of x is f(x) equal to -3?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f(-3) = 5x + 7 if we solve for this we get

x= -2 So at -2 f(-3)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If f(x) is equal to -3 then we right f(x) = -3, which we translate into the equation

5x + 7 = -3.

We easily solve this equation (subtract 7 from both sides then divide both sides by 5) to obtain x = -2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. See my notes. Let me know if you have any questions. &#