Query 01

#$&*

course MTH 279

Section 2.2*********************************************

Question: 1. Solve the following equations with the given initial conditions:

1. y ' - 2 y = 0, y(1) - 3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dy/dt = 2y

integ(1/(2y)dy) = integ(dt)

ln(2y)/2 + c_1 = t + c_2

ln(2y) = 2t + C

2y = e^(2t+C) = Ae^(2t)

y_g(t) = Ae^(2t)

3 = Ae^(2(1))

A = 3e^(-2)

y_p(t) = 3e^(2t-2)

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: 2. t^2 y ' - 9 y = 0, y(1) = 2.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dy/dt = 9y/t^2

integrate(1/(9y) dy) = integrate(1/t^2 dt)

ln(9y)/9 + c_1 = -1/t + c_2

ln(9y) = -9/t + C

9y = Ae^(-9/t)

y_g = Ae^(-9/t)

2 = Ae^(-9/1)

A = 2e^(9)

y_p = 2e^(-9/t + 9)

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique rating: OK

*********************************************

Question: 3. (t^2 + t) y' + (2t + 1) y = 0, y(0) = 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(t^2+t)y’ = -(2t+1)y

dy/dt = -(2t+1)y/(t^2+t)

integrate(dy/y) = integrate(-(2t+1)dt/(t^2+t))

ln(y) + c_1 = -ln(t^2+t)+c_2

ln(y) = -ln(t^2+t) + C

y_g = 1/(t^2+t) + e^(C) = A/(t^2+t)

This y_g will never fulfill the initial conditions imposed, as a substitution of 0 for t will yield division by 0, which is undefined. There is obviously a vertical asymptote at t = 0. So there is no particular solution to the set of initial conditions given.

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I feel pretty confident that there is no particular solution to this problem. It makes sense to me that there would be an asymptote at t = 0, which, along with division by 0, would make the imposed initial condition false.

@&

The existence theorem confirms this.

The function (2 t + 1 ) / (t^2 + t)

is undefined at t = 0 and t = -1, so no solution is guaranteed at those points.

*@

------------------------------------------------

Self-critique rating: 3

*********************************************

Question: 4. y ' + sin(3 t) y = 0, y(0) = 2.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dy/dt = -sin(3t)y

integrate(dy/y) = integrate(-sin(3t)dt)

ln(y) + c_1 = cos(3t)/3 + c_2

ln(y) = cos(3t)/3 + C

y_g = e^(cos(3t)/3 + C) = Ae^(cos(3t)/3)

2 = Ae^(cos(0)/3) >> 2e^(-1/3) = A

y_p = 2e^(cos(3t)/3-1/3)

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: 5. Match each equation with one of the direction fields shown below, and explain why you chose as you did.

y ' - t^2 y = 0

E; I began with t = 0, which would yield a y’ of 0, which means that for every y-value corresponding to t=0 on the t-y plot, the slope would be 0. I narrowed down the choices. I then did the same for t = 1, which yields a y’ that is directly correlated on a 1:1 basis with y. I narrowed down the choices. I incremented t by 1, rationalizing that there is an exponential jump in y’ for every increase in t, as well as a 1:1 correlation as y changes. The limit as t -> inf of y’ yields infinity above the t-axis, and -infinity below the t-axis. This fits E best.

****

#$&*

y ' - y = 0

A; y’ depends only on the y-value. This means that all slopes in the direction field are positive above the t-axis, and negative below the t-axis, as well as 0 along the t-axis itself. This best fits A.

****

#$&*

y' - y / t = 0

C; y’ depends directly on y and inversely on t. The more important thing to notice, however, is that when y and t have opposing signs, y’ is negative, and when they have similar signs, y’ is positive. Also, when y and t have the same absolute value, y’ is +/-1, meaning that there are slant asymptotes. When t = 0, y’ is undefined, or vertical. When y = 0, y’ is 0. This best fits C.

****

#$&*

y ' - t y = 0

B; When t or y are equal to 0, y’ is also equal to 0. There is a direct correlation with both variables, which are multiplied. This means that as t increases, so does y’. As y increases, so does y’. The greatest slopes occur as both y and t increase. Values in the first and third quadrants yield positive slopes, while values in the second and fourth yield negative slopes. This best fits B.

****

#$&*

y ' + t y = 0

F; y’ is (negatively) directly correlated to the product of t and y. Values in the first and third quadrants yield positive y’ values. Values in the second and fourth quadrants yield negative y’ values. This best fits F.

****

#$&*

A

B

C

D

E

F

6. The graph of y ' + b y = 0 passes through the points (1, 2) and (3, 8). What is the value of b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dy/dt = -by

integrate(dy/y) = integrate(-bdt)

ln(y)= -bt + C

y = Ae^(-bt)

Imposing (1,2) :

2 = Ae^(-b)

b = -ln(2/A)

y_g = Ae^(ln(2/A)t)

Imposing (3,8):

8 = Ae^(ln(2/A)*3) = A*(8A^(-3)) = 8/A^2

A^2 = 1

Sqrt(A^2) = A = 1

b = -ln(2/A) = -ln(2)

y_p = e^(ln(2)t) = 2^(t)

y’ - ln(2)y = 0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Self-critique (if necessary): OK

Self-critique rating: OK

*********************************************

Question:

7. The equation y ' - y = 2 is first-order linear, but is not homogeneous.

If we let w(t) = y(t) + 2, then:

What is w ' ?

****

#$&*

What is y(t) in terms of w(t)?

****

#$&*

What therefore is the equation y ' - y = 2, written in terms of the function w and its derivative w ' ?

****

#$&*

Now solve the equation and check your solution:

Solve this new equation in terms of w.

****

#$&*

Substitute y + 2 for w and get the solution in terms of y.

****

#$&*

Check to be sure this function is indeed a solution to the equation.

****

#$&*

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

w’(t) = y’(t)

y(t) = w(t) - 2

w’(t) - w(t) + 2 = 2 >> w’(t) = w(t)

integrate(dw/w) = integrate(dt)

ln(w) = t + C

w = Ae^(t)

y + 2 = Ae^(t)

y = Ae^(t) - 2

It checks out.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: 8. The graph below is a solution of the equation y ' - b y = 0 with initial condition y(0) = y_0. What are the values of y_0 and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Looking at the graph, it’s evident that y_0 = 1. Using this information, we have:

dy/dt = by

integrate(dy/y) = integrate(bdt)

ln(y) = bt + C

y = Ae^(bt)

1 = Ae^(b(0))

A = 1

y_g = e^(bt)

It looks as if y(-1) is slightly less than 0.5, so we can use this to estimate our value of b.

0.5 = e^(b*(-1))

b ≈ 0.693

We need the value of y(t) to be less than 0.5, so we increase b, slightly.

y = e^((0.75)(-1)) ≈ 0.472

This is pretty close.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): Honestly, I feel comfortable up until the finding the b. Since there’s only one (obvious) initial constraint, and it directly relates to the value of A, I could only think to estimate to find a reasonable value of b.

Self-critique rating: 3

"

&#Very good responses. Let me know if you have questions. &#