Query 02

#$&*

course MTH 279

Solve each equation:*********************************************

Question: 1. y ' + y = 3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dy/dt = -y+3

integrate(dy/(-y+3)) = integrate(dt)

-ln(y-3) + c_1 = t + c_2

ln(y-3) = -t + C

y-3 = Ae^(-t)

y = Ae^(-t) + 3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique rating: OK

*********************************************

Question:

2. y ' + t y = 3 t

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dy/dt = -ty + 3t

dy/dt = t(-y+3)

integrate(dy/(-y+3)) = integrate(tdt)

-ln(y-3) = t^2/2 + C

ln(y-3) = -t^2/2 + C

y-3 = Ae^(-t^2/2)

y = Ae^(-t^2/2) + 3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question:

3. y ' - 4 y = sin(2 t)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dy/dt - 4y = sin(2t)

µ = e^(ʃ-4dt) = e^(-4t)

e^(-4t)dy/dt - 4e^(-4t)y = sin(2t)e^(-4t)

d/dt(e^(-4t)y) = sin(2t)e^(-4t)

ʃd/dt(e^(-4t)y)dt = ʃsin(2t)e^(-4t)dt

Integration by parts:

u = e^(-4t)

du = -4e^(-4t) dt

dv = sin(2t) dt

v = -cos(2t)/2

ʃsin(2t)e^(-4t)dt = -e^(-4t)cos(2t)/2 - 2ʃe^(-4t)cos(2t)dt

u = e^(-4t)

du = -4e^(-4t) dt

dv = cos(2t) dt

v = sin(2t)/2

ʃsin(2t)e^(-4t)dt = -e^(-t)cos(2t)/2 - sin(2t)e^(-4t) - 4 ʃsin(2t)e^(-4t)dt

5 ʃsin(2t)e^(-4t)dt = -e^(-4t)cos(2t)/2 - sin(2t)e^(-4t)

ʃsin(2t)e^(-4t)dt = -e^(-4t)cos(2t)/10 - e^(-4t)sin(2t)/5

Substituting back into original:

e^(-4t)y + c_1 = -e^(-4t)cos(2t)/10 - e^(-4t)sin(2t)/5 + c_2

e^(-4t)y = -e^(-4t)cos(2t)/10 - e^(-4t)sin(2t)/5 + C

y = cos(2t)/10 - sin(2t)/5 + e^(4t)C

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Self-critique (if necessary): I’m confident I did this correctly. It took me a few minutes to remember how to do this cyclical integration by parts, but once I realized the method I needed to use, it was pretty simple, just time consuming.

Self-critique rating: 3

*********************************************

Question:

4. y ' + y = e^t, y (0) = 2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Solving the first order homogeneous linear diff. eq.:

y’ + y = 0

dy/dt = -y

-dy/y = dt

ʃ-dy/y = ʃdt

-ln(y) = t + C

1/y = Ae^(t)

y_1 = Ae^(-t)

Solving the first order nonhomogeneous linear diff. eq. using undetermined coefficients:

We can guess since the nonhomogeneous portion is e^(t) that the form our solution will take will be y_2 = Be^(t).

Thus, y_2’ = Be^(t). We substitute into the original diff. eq. to get:

Be^(t) + Be^(t) = e^(t)

2Be^(t) = e^(t)

2B = 1

B = ½

This means that y_2 = e^(t)/2.

y_g = y_1 + y_2 = Ae^(-t) + e^(t)/2

Imposing the initial conditions, we have:

2 = Ae^(0) + e^(0)/2 = A + ½

A = 3/2

y_p = 3e^(-t)/2 + e^(t)/2

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique rating: OK

*********************************************

Question:

5. y ' + 3 y = 3 + 2 t + e^t, y(1) = e^2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Solving the homogeneous portion:

y’+3y = 0

dy/dt = -3y

ʃdy/y = ʃ-3dt

ln(y) = -3t + C

y_1 = Ae^(-3t)

Solving the non-homogeneous portion:

We can guess that y_2 will take a form of Be^(t) + Dt + E.

y_2 = Be^(t) + Dt + E

y_2’ = Be^(t) + D

y_2’ + 3y_2 = 3 + 2t + e^(t)

Be^(t) + Dt + E + Be^(t) + D = 3 + 2t + e^(t)

B = ¼

D = 2/3

E = 7/9

y_2 = e^(t)/4 + 2t/3 + 7/9

y_g = y_1 + y_2

y_g = Ae^(-3t) + e^(t)/4 + 2t/3 + 7/9

Imposing initial conditions:

e^2 = Ae^(-3) + e/4 + 2/3 + 7/9

Ae^(-3) = e^2 - e/4 - 13/9

A = e^(3)((36e^2 - 9e - 52)/36)

y_p = e^(3)((36e^2 - 9e - 52)/36)(e^(-3t)) + e^(t)/4 + 2t/3 + 7/9

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question:

6. The general solution to the equation y ' + p(t) y = g(t) is y = C e^(-t^2) + 1, t > 0. What are the functions p(t) and g(t)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

µ(t) = e^(ʃp(t)dt)

µ(t)dy/dt + µ(t)p(t)y = g(t)µ(t)

ʃ(d/dt(µ(t)y)dt) = ʃg(t)µ(t)dt

µ(t)y + c_1 = ʃg(t)µ(t)dt + c_2

y = (ʃg(t)µ(t)dt + C)/(µ(t))

y = e^(ʃ-p(t)dt)( ʃg(t)e^(ʃp(t)dt) + Ce^(ʃ-p(t)dt) = Ce^(-t^2) + 1

By looking at this and realizing that the derivative of -t^2 is -2t, we can determine that p(t) = 2t.

We can also rationalize based on this that the value of g(t) is simply 1.

y = Ae^(ʃ-2tdt) + e^(ʃ-2tdt)*ʃe^(ʃ2tdt)dt

We can plug this back into the original equation and find that this is true.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I spent a good deal of time working on this problem. I tried the method of undetermined coefficients at first, but failed to get an answer. I’m not entirely sure why. It may have been a simple mistake. I worked through the long method and came up with the answer above, which works.

@&

Undetermined coefficients aren't likely to work well for this function, mainly because p(t) cannot be assumed to be constant. The relationship between p(t) and the terms you would need in order to get a multiple of e^(-t^2) would depend a lot on p(t), and in general would be impossibly complicated.

*@

------------------------------------------------

Self-critique rating: 3

@&

Very good. Your first-year calculus came back to you nicely.

*@

@&

You are also using methods that occur later in the course, indicating that you have a good headstart on the material.

*@