#$&* course MTH 279 Query 05 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: 3.2.10. Solve 3 y^2 y ' + 2 t = 1 with initial condition y(0) = -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3y^2dy/dt = 1-2t ʃ3y^2dy/dt*dt = ʃ1-2tdt y^3 + c_1 = t - t^2 + c_2 y^3 = t - t^2 + C y = (t-t^2+C)^(1/3) y(0) = -1 -1 = C^(1/3) -1^3 = C -1 = C y(t) = (t-t^2-1)^(1/3) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: 3.2.18. State a problem whose implicit solution is given by y^3 + t^2 + sin(y) = 4, including a specific initial condition at t = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: d/dt(y^3) + d/dt(t^2) + d/dt(sin(y)) = d/dt(4) 3y^2*y’ + 2t + cos(y)*y’ = 0 ; y(0) = 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: 3.2.24. Solve the equation y ' = (y^2 + 2 y + 1) sin(t) and determine the t interval over which the solution exists. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ʃdy/((y+1)^2) = ʃsin(t)dt -1/(y+1) + c_1 = -cos(t) + c_2 -1/(y+1) = -cos(t) + C y = 1/(cos(t)-C) - 1 The solution exists at all real value t, such that cos(t)-C ≠ 0. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: 3.2.28. Match the graphs of the solution curves with the equations y ' = - y^2, y ' = y^3 and y ' = y ( 4 - y). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: There are no graphs listed with this assignment on the website. I found this assignment at http://vhcc2.vhcc.edu/dsmith/GenInfo/qa_query_etc/differential_equations/query_05.htm I’m not finding any graphs related to this assignment. I can however describe the graphs, if that is acceptable. ʃdy/y^2 = ʃ-1dt -1/y + c_1 = -t + c_2 -1/y = -t + C y = -1/(-t+C) = 1/(t-C) This produces a graph that tends to 0 as (t+C) increases to ∞ (horizontal asymptote). There is a vertical asymptote as (t+C) approaches 0. It approaches ∞ from the right side, and -∞ from the left side. It also tends to 0 as (t+C) decreases to -∞ (horizontal asymptote). y’ = y^3 y = (-1/(2t+C))^(1/2) This solution exists everywhere that (2t+C) ≠ 0 and (2t+C) doesn’t take a positive value. Assuming that C=0 for the moment, the solution would have a vertical asymptote at t = 0, and would cease to exist for any positive t value. As t approaches negative infinity, values tend towards 0. y ' = y ( 4 - y) y = 4e^(4(x+C))/(e^(4(x+C))+1) This solution exists at every value of t. As t approaches infinity, y approaches 4. As t approaches negative infinity, y approaches 0. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK