#$&*
course MTH 279 Query 07 Differential Equations*********************************************.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: 3.4.6. Solve the equation y ' - y = t y^(1/3), y(0) = -9 as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y’*y^(-1/3) - y^(2/3) = t v = y^(2/3) δv/δt = 2/3*y^(-1/3)*y’ 3/2v’ - v = t v’ - 2/3v = 2/3t µ(t) = e^(ʃ-2/3dt) = e^(-2t/3) e^(-2t/3)v’ - 2/3e^(-2t/3)v = 2/3te^(-2t/3) ʃd/dt(e^(-2t/3)v)dt = ʃ2/3*t*e^(-2t/3)dt v = (-2t-3)/2 + Ae^(2t/3) v = y^(2/3) (-2t-3)/2 + Ae^(2t/3) = y^(2/3) y = [(-2Ae^(2t/3)+2t+3)*sqrt(2(2Ae^(2t/3)-2t-3))]/4 Imposing initial condition y(0) = -9 A = [2(3^(4/3)+3)]/2 y(t) = -[((3(2(3^(1/3)) + 1)e^(2t/3) - 2t - 3)*sqrt(2(2(3^(1/3))+1)e^(2t/3)-2t-3)]/4 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I feel pretty confident that I have the right answer. It was a bit messy, and I hope I haven’t let any sign changes go astray. The final answer was a mess, so hopefully no parentheses are missing or incorrectly placed. ------------------------------------------------ Self-critique rating: 3 ********************************************* Question: 3.4.8. Solve the equation y ' = - (y + 1) + t ( y + 1)^(-2) as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y’ = -y - 1 + t(y+1)^(-2) y’ + y = -1 + t (y+1)^(-2) x(t) = y(t) + 1 y = x-1 y’ = x’ x’ + (x-1) = -1 + t(x)^(-2) x^2*x’ + x^3 = t >> p(t) = 1, q(t) = t, n = -2 v = x^3 δv/δt = 3x^2*x’ v’/3 = x^2*x’ v’/3 + v = t v’ + 3v = 3t µ = e^(3t) e^(3t)v’ + 3e^(3t)v = 3te^(3t) ʃd/dt(e^(3t)v)dt = ʃ3te^(3t)dt e^(3t)*v = te^(3t) - e^(3t)/3 + C v = t - 1/3 + Ae^(-3t) x^3 = t - 1/3 + Ae^(-3t) x(t) = (t-1/3+Ae^(-3t))^(1/3) y(t) + 1 = (t - 1/3 + Ae^(-3t))^(1/3) y(t) = (t - 1/3 + Ae^(-3t))^(1/3) - 1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I spent a good bit of time on this problem, and I’m pretty sure that I tackled it the right way. I think what I have is correct. If there’s an easier/shorter way to do this problem, any advisement would be gladly appreciated. ------------------------------------------------ Self-critique rating: 3"
`gr31#$&* course MTH 279 Query 07 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: 3.4.6. Solve the equation y ' - y = t y^(1/3), y(0) = -9 as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y’*y^(-1/3) - y^(2/3) = t v = y^(2/3) δv/δt = 2/3*y^(-1/3)*y’ 3/2v’ - v = t v’ - 2/3v = 2/3t µ(t) = e^(ʃ-2/3dt) = e^(-2t/3) e^(-2t/3)v’ - 2/3e^(-2t/3)v = 2/3te^(-2t/3) ʃd/dt(e^(-2t/3)v)dt = ʃ2/3*t*e^(-2t/3)dt v = (-2t-3)/2 + Ae^(2t/3) v = y^(2/3) (-2t-3)/2 + Ae^(2t/3) = y^(2/3) y = [(-2Ae^(2t/3)+2t+3)*sqrt(2(2Ae^(2t/3)-2t-3))]/4 Imposing initial condition y(0) = -9 A = [2(3^(4/3)+3)]/2 y(t) = -[((3(2(3^(1/3)) + 1)e^(2t/3) - 2t - 3)*sqrt(2(2(3^(1/3))+1)e^(2t/3)-2t-3)]/4 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I feel pretty confident that I have the right answer. It was a bit messy, and I hope I haven’t let any sign changes go astray. The final answer was a mess, so hopefully no parentheses are missing or incorrectly placed. ------------------------------------------------ Self-critique rating: 3 ********************************************* Question: 3.4.8. Solve the equation y ' = - (y + 1) + t ( y + 1)^(-2) as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y’ = -y - 1 + t(y+1)^(-2) y’ + y = -1 + t (y+1)^(-2) x(t) = y(t) + 1 y = x-1 y’ = x’ x’ + (x-1) = -1 + t(x)^(-2) x^2*x’ + x^3 = t >> p(t) = 1, q(t) = t, n = -2 v = x^3 δv/δt = 3x^2*x’ v’/3 = x^2*x’ v’/3 + v = t v’ + 3v = 3t µ = e^(3t) e^(3t)v’ + 3e^(3t)v = 3te^(3t) ʃd/dt(e^(3t)v)dt = ʃ3te^(3t)dt e^(3t)*v = te^(3t) - e^(3t)/3 + C v = t - 1/3 + Ae^(-3t) x^3 = t - 1/3 + Ae^(-3t) x(t) = (t-1/3+Ae^(-3t))^(1/3) y(t) + 1 = (t - 1/3 + Ae^(-3t))^(1/3) y(t) = (t - 1/3 + Ae^(-3t))^(1/3) - 1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I spent a good bit of time on this problem, and I’m pretty sure that I tackled it the right way. I think what I have is correct. If there’s an easier/shorter way to do this problem, any advisement would be gladly appreciated. ------------------------------------------------ Self-critique rating: 3"