#$&* course MTH 279 Query 10 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: 3.7.6. A vertical projectile has initial velocity v_0, and experiences drag force k v^2 in the direction opposite its motion. Assume that acceleration g of gravity is constant. Find the maximum height to which the projectile rises. If the initial velocity is 80 m/s and the projectile, whose mass is .12 grams, rises to a height of 40 meters (estimated quantities for a plastic BB), what is the value of k? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: dv/dt = dv/dx*dx/dt = v*dv/dx mvdv/dx = -kv^2-mg vdv/dx = -kv^2/m - g ʃvdv/(k/m*v^2+g) = ʃ-dx m/(2k)*ln(kv^2/m+g) = -x + C v = sqrt([m*Ae^(-2kx/m)-mg]/k) v_0 = sqrt((mA-mg)/k) A = kv_0^2/m + g v(x) = sqrt([m(kv_0^2/m+g)e^(-2kx/m)-mg]/k) x_max : v(x) = 0 x_max = mln((kv_0^2+gm)/(gm))/(2k)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: 3.7.8. Mass m accelerates from velocity v_1 to velocity v_2, while constant power is exerted by the net force. At any instant power = force * velocity (physics explanation: power = dw / dt, the rate at which work is being done; w = F * dx so dw/dt = F * dx/dt = F * v). How far does the mass travel as it accelerates? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: F = P/v F = m dv/dt dv/dt = dv/dx * dx/dt = v dv/dx mv dv/dx = P/v ʃmv^2 dv = ʃPdx mv^3/3 = Px + C mv_2^3/3 - mv_1^3/3 = P(x_2-x_1) d = x_2-x_1 d = mv_2^3-mv_1^3/(3P) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: 3.7.11. An object falls to the surface of the Earth from a great height h, and as it falls experiences a drag force proportional to the square of its velocity. Assume that the gravitational force is - G M m / r^2. What will be its impact velocity? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: F = -GmM/r^2 mdv/dt = -GmM/r^2 + kv^2 mvdv/dr = -GmM/r^2 + kv^2 dv/dr = -GM/(r^2*v) + kv/m dv/dr - kv/m = -GM/r^2 * v^(-1) v dv/dr - kv^2/m = -GM/r^2 u = v^2 ; u’ = 2vv’ u’/2 - ku/m = -GM/r^2 u’ - 2ku/m = -2GM/r^2 µ = e^(ʃ2k/mdr) = e^(2kr/m) ʃd/dr(e^(2kr/m)u)dr = ʃ-2GM/r^2*e^(2kr/m) dr e^(2kr/m)*u = -2GM ʃe^(2kr/m)/(r^2)dr u = -2GMe^(-2kr/m)*ʃe^(2kr/m)/r^2 dr v = sqrt(-2GMe^(-2kr/m)*ʃe^(2kr/m)/r^2 dr) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think this correct, or very nearly. I may have made an algebraic mistake at some point or something of that matter.. but hopefully not. ------------------------------------------------ Self-critique rating: 2"