#$&* course MTH 279 Query 12 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: For each of the equations and initial conditions below, find the largest t interval in which a solution is known to exist: y '' + y ' + 3 t y = tan(t), y(pi) = 1, y ' (pi) = -1 t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0, y(1) = 0, y ' (1) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a) p(t) = 1, continuous (-∞,∞); q(t) = 3t, continuous (-∞,∞); g(t) = tan(t), continuous except at all t = nπ/2 where n = all odd integers, positive and negative. The largest t interval on which a solution is known to exist is π/2 < t < 3π/2. b) p(t) = sin(2t)/(t(t^2-9)), continuous except at t = 0,±3; q(t) = 2/t, continuous everywhere except t = 0; g(t) = 0, continuous for all reals. Since the initial conditions are imposed at t = 1, the largest interval on which a solution is known to exist is 0 < t < 3. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Decide whether the solution of each of the following equations is increasing or decreasing, and whether each is concave up or concave down in the vicinity of the given initial point: y '' + y = - 2 t, y(0) = 1, y ' (0) = -1 y '' + y = - 2 t, y(0) = 1, y ' (0) = -1 y '' - y = t^2, y(0) = 1, y ' (0) = 1 y '' - y = - 2 cos(t), y (0) = 1, y ' (0) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a) y(t) = f(t,y,y) = -y - 2t; y(t_0) = -1, y_0 = -1 >> solution is concave down and is decreasing b) Im going to assume that this was a repeat typo, and say that it is concave down and decreasing as well. c) y(t) = f(t,y,y) = t^2 + y; y(t_0) = 1; y(t_0) = 1 >> Solution is concave up and is increasing d) y(t) = f(t,y,y) = -2cos(t) + y; y(t_0) = -1; y(t_0) = 1 >> Solution is concave down and is increasing. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK"