#$&* course MTH 279 Query 17 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Solve the equation 3 y '' + 2 sqrt(3) y ' + y = 0, y(0) = 2 sqrt(3), y ' (0) = 3 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y” + 2/3sqrt(3)y’ + 1/3y = 0 Without writing through all of the form assumptions, our characteristic equation is: λ^2 + 2/3sqrt(3)λ + 1/3 = 0 Using the quadratic formula: λ = (-2/3sqrt(3) ± sqrt((2/3sqrt(3))^2-4/3))/2 = -sqrt(3)/3 We have real repeated roots, so we have one solution of form: y_1= e^(-t*sqrt(3)/3) and one solution of the form y_2 = e^(-t*sqrt(3)/3)*u(t). y_2’ = (-e^(-t/sqrt(3))*u)/sqrt(3) + e^(-t/sqrt(3))*u’ y_2” = (e^(-t/sqrt(3))*u)/3 - (2e^(-t/sqrt(3))*u’)/sqrt(3) + e^(-t/sqrt(3))*u” Substituting y_2, y_2’, and y_2” into the simplified DE and simplifying, we get: y_2” + 2sqrt(3)/3*y_2’ + 1/3y_2 = e^(-t/sqrt(3))*u” Since the domain of the exponential portion of the right hand side is unrestricted (exists at all values of t), y_2 = e^(-t/sqrt(3))*u is a solution only if u” = 0. ʃd/dt(u’)dt = ʃ0dt u’ = A ʃd/dt(u)dt = ʃAdt u(t) = At+C We can simplify this to say that y_2 = te^(-t/sqrt(3)). Verifying the solutions make a fundamental set: W(t) = |[e^(-t/sqrt(3)), t*e^(-t/sqrt(3)); -e^(-t/sqrt(3))/sqrt(3), -t*e^(-t/sqrt(3))/sqrt(3) + e^(-t/sqrt(3))]| = e^(-2t/sqrt(3)) This domain of this Wronskian is unrestricted, and is nonzero at all values of t, so the solutions do form a fundamental set. y_g = Ae^(-t/sqrt(3)) + B*t*e^(-t/sqrt(3)) y’ = -Ae^(-t/sqrt(3))/sqrt(3) - B*t*e^(-t/sqrt(3))/sqrt(3) + B*e^(-t/sqrt(3)) Imposing our initial conditions: y(0) = 2 sqrt(3), y ' (0) = 3 y(0) = A = 2sqrt(3) A = 2sqrt(3) y’(0) = -(2sqrt(3))/sqrt(3) + B = 3 B = 5 y(t) = 2sqrt(3)e^(-t/sqrt(3)) + 5t*e^(-t/sqrt(3)) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Solve the equation y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0, which has known solution y_1(t) = sin(t) You will use reduction of order, find intervals of definition and interval(s) where the Wronskian is continuous and nonzero. See your text for a more complete statement of this problem. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Since y_1=sin(t), we assume that our second solution takes a form of y_2 = sin(t)u(t). y_2’ = cos(t)*u + sin(t)*u’ y_2” = -sin(t)*u + cos(t)*u’ + cos(t)*u’ + sin(t)*u” = -sin(t)*u + 2cos(t)*u’ + sin(t)*u” Plugging this in to our DE, we get: y_2” - 2cot(t)y_2’ + (1+2cot^2(t))y = sin(t)*u” Since the domain of the right hand side of the equation is unrestricted, and exists for all values of t, we find that sin(t)*u is a solution if u” = 0. ʃd/dt(u’)dt = ʃ0dt u’ = A ʃd/dt(u)dt = ʃAdt u = At+C y_2 = t*sin(t) We check to make sure that this is a fundamental set: W(t) = |[sin(t), t*sin(t);cos(t), sin(t) + t*cos(t)]| = sin^2(t) The Wronskian is nonzero for values of t≠nπ, n = all real integers. Since it is zero for some values of t, we have to dive a little bit deeper. c(sin(t)) + k(t*sin(t)) = 0 Since there is no non-zero constant combination of c and k that yield a value of 0, we know that these solutions are linearly independent, and form a fundamental set. y_g = Asin(t) + Bt*sin(t) This solution exists everywhere, and is continuous at all real values of t. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------