#$&* course MTH 279 Query 19 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Find the general solution of the equation y '' + y ' = 6 t^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Complementary solution: characteristic polynomial: λ^2 + λ = 0 λ = -½ ± ½ = -1,0 y_1 = e^(-t) y_2 = e^(0) y_c = Ae^(-t) + B Particular solution: guess that solution will take the form y_p = Ct^3 + Dt^2 + Et y_p’ = 3Ct^2 + 2Dt + E y_p” = 6Ct + 2D Plug back into the DE: 3Ct^2 + (6C+2D)t + 2D + E = 6t^2 3Ct^2 = 6t^2 C = 2 6C+2D = 0 D = -6 2D + E = 0 E = 12 y_p = 2t^3 - 6t^2 + 12t y_g = Ae^(-t) + B + 2t^3 - 6t^2 + 12t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Find the general solution of the equation y '' + y ' = cos(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Complementary solution: λ^2 + λ = 0 λ = -½ ± ½ = -1,0 y_1 = Ae^(-t) y_2 = Be^(0) y_c = Ae^(-t) + B Particular solution: Guess that the solution will come in form y_p = Csin(t) + Dcos(t). y_p’ = Ccos(t) - Dsin(t) y_p” = -Csin(t) - Dcos(t) -Csin(t) - Dcos(t) + Ccos(t) - Dsin(t) = cos(t) (C-D)cos(t) - (C+D)sin(t) = cos(t) C-D = 1 C = 1+D -C-D = -1-D-D = cos(t) D = -½ C = ½ y_p = 1/2*sin(t) - ½*cos(t) y_g = Ae^(-t) + B + ½*sin(t) - ½*cos(t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' - 2 y ' + 3 y = 2 e^-t cos(t) + t^2 + t e^(3 t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The expected form would be: y_p = Ae^(-t)sin(t) + Be^(-t)cos(t) + Ct^3 + Dt^2 + Et + Ft*e^(3t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think this would be correct for this situation. I think you would add the different cases, e^(αt)cos(βt), polynomial, and t*e^(αt). ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' + 4 y = 2 sin(t) + cosh(t) + cosh^2(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_p = Asin(t) + Bcos(t) + Ccosh(t)^3 + Dcosh(t)^2 + Ecosh(t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I’m not entirely sure about this one. I’m not great with hyperbolic functions, and I couldn’t find any tables with this form listed. I know that the inhomogeneity is a sin or cos function, then we have Asin(βt) + Bcos(βt), but I’m not positive about the hyperbolic functions. I treated them as if they were a polynomial though, since one is squared and one is not. I’m not sure if this is possible. ------------------------------------------------ Self-critique rating: 3 ********************************************* Question: The equation y '' + alpha y ' + beta y = t + sin(t) has complementary solution y_C = c_1 cos(t) + c_2 sin(t) (i.e., this is the solution to the homogeneous equation). Find alpha and beta, and solve the equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: λ = -α/2 ± sqrt(α^2 - 4β)/2 In order to have y_c = Acos(t) + Bsin(t), we must have complex roots, which means that 4β>α^2. λ = -α/2 ± i*sqrt(4β - α^2)/2 y_1 = e^(α/2*t)(cos(β_2t) + i*sin(β_2t)) y_2 = e^(α/2*t)*(cos(β_2t) - i*sin(β_2t)) We know that cos(β_2t) = cos(t) and sin(β_2t) = sin(t), so β_2 = 1. sqrt(4β - α^2)/2 = 1 Since y_c is not multiplied by an exponential function, we can determine that α = 0. Which means that β = 1. y” + y = t + sin(t) y_p = At^2 + Bt + C*t*sin(t) + D*t*cos(t) y_p’ = 2At + B + Ctcos(t) + Csin(t) - Dtsin(t) + Dcos(t) y_p” = 2A + Ccos(t) - Ctsin(t) + Ccos(t) - Dtcos(t) - Dsin(t) - Dsin(t) Plugging in, simplifying, and solving, we get: A = 0, B = 1, C = 0, D = -1/2 y_p = t - tcos(t)/2 y_g = y_c + y_p = Acos(t) + Bsin(t) + t - tcos(t)/2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Consider the equation y '' - y = e^(`i * 2 t), where `i = sqrt(-1). Using trial solution y_P = A e^(i * 2 t) find the value of A, which is in general a complex number (though in some cases the real or imaginary part of A might be zero) Show that the real and imaginary parts of the resulting function y_P are, respectively, solutions to the real and imaginary parts of the original equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_p = Ae^(2it) y_p’ = -2Asin(2t) + 2A*i*cos(2t) y_p” = -4Acos(2t) - 4A*i*sin(2t) -5Acos(2t) - 5A*i*sin(2t) = cos(2t) + i*sin(2t) A = -1/5 y_ p = -e^(2it)/5 = -cos(2t)/5 - i*sin(2t)/5 y_p1 = -Acos(2t)/5 y_p1’ = 2Asin(2t)/5 y_p1” = 4Acos(2t)/5 4Acos(2t)/5 + Acos(2t)/5 = cos(2t) 5Acos(2t)/5 = cos(2t) Acos(2t) = cos(2t) A = 1 y_p2 = -i*sin(2t)/5 y_p2’ = -2i*cos(2t)/5 y_p2” = 4*i*sin(2t)/5 4*i*sin(2t)/5 + i*sin(2t)/5 = -i*sin(2t) 5*i*sin(2t)/5 = -i*sin(2t) Both y_p1 and y_p2 are solutions of the differential equation. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK"