#$&* course MTH 279 Query 22 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Find the limit as t -> 0 of the matrix [ sin(t) / t, t cos(t), 3 / (t + 1); e^(3 t), sec(t), 2 t / (t^2 - 1) ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: [1, 0, 3; 1, 1, 0] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Find A ' (t) and A ''(t), where the derivatives are with respect to t and the matrix is A = [ sin(t), 3 t; t^2 + 2, 5 ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A’(t) = [cos(t), 3; 2t, 0] A”(t) = [-sin(t), 0; 2, 0] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Write the system of equations y_1 ' = t^2 y_1 + 3 y_2 + sec(t) y_2 ' = sin(t) y _1 + t y_2 - 5 in the form y ' = P(t) y + g(t), where P(t) is a 2 x 2 matrix and y and g(t) are 2 x 1 column vectors. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y’ = [y_1’;y_2’] p(t) = [t^2, 3; sin(t), t] y = [y_1;y_2] g(t) = [sec(t); -5] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: If A '' = [1, t; 0, 0] with A(0) = [ 1, 1; -2, 1] A(1) = [-1, 2; -2, 3 ] then what is the matrix A(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A’(t) = ʃA”dt = [ʃdt, ʃtdt; ʃ0dt, ʃ0dt] = [t+C, t^2/2+C; C, C] Imposing A’(1) = [-1, 2; -2, 3], A’(t) = [t-2, t^2/2 + 3/2; -2, 3] A(t) = ʃA’dt = [t^2/2-2t+C, t^3/6 + 3t/2 + C; -2t+C, 3t+C] Imposing A(0) = [ 1, 1; -2, 1], A(t) = [t^2/2 - 2t + 1, t^3/6 + 3t/2 + 1; -2t-2, 3t+1] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Find the matrix A(t), defined by A(t) = integral( B(s) ds, s from 0 to t), where B = [ e^s, 6s; cos(2 pi s), sin(2 pi s) ]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A(t) = ʃB(s)ds from 0 to t = [e^s+C|(0,t), 3s^2+C|(0,t); sin(2πs)/(2π)+C|(0,t), -cos(2πs)/(2π)+C|(0,t)] A(t) = [e^t-1, 3t^2; sin(2πt)/(2π), 1/(2π) - cos(2πt)/(2π)] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK"