#$&* course MTH 279 Query 23 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: The equation y ' = [ y_2; y_3; -2 y_1 + 4 y_3 + e^(3 t) ] with initial condition y(0) = [1; -2; 3] represents a higher-order equation of form y[n] + a_(n-1) * y[n-1] + ... + a^2 y '' + a_1 y ' + a_0 y = g(t). (y[n], for example, represents the nth derivative of y; a_(n-1) is understood as a with subscript n - 1). What is the higher-order equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: [y_1’; y_2’; y_3’] = [ y_2; y_3; -2 y_1 + 4 y_3 + e^(3 t) ] y’(t) = [y_1’; y_2’; y_3’] = [y’(t); y”(t); y’’’(t)] = [y_2; y_3; -2y_1 + 4y_3+ e^(3t)] Anti-differentiating: y(t) = [y_1;y_2;y_3] = [y; y’; y”] y’’’ = -2y_1 + 4y_3 + e^(3t) y’’’ - 4y_3 + 2y_1 = e^(3t) y_3 = y” y_1 = y y’’’ - 4y” + 2y = e^(3t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK "