#$&* course MTH 279 The last question on the Query was blank when I opened it at:http://vhcc2.vhcc.edu/dsmith/GenInfo/qa_query_etc/differential_equations/query_24.htm
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: y ' = A y, with solutions y_1 = [5; 1] y_2 = [2 e^(3 t), e^(3 t) ] Verify that this constitutes a fundamental set. Find Tr(A). Show that psi(t) = [y_1, y_2] satisfies psi ' = A * psi Find A by finding psi ' * psi^-1 Is the result consistent with your result for the trace of A? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = [5,2e^(3t); 1, e^(3t)] W(t) = det(y) = 3e^(3t). The Wronskian is non-zero at all values of t, so the solutions form a fundamental set. W’(t) = tr[A]W(t) = tr[A]*3e^(3t) = 9e^(3t) tr[A] = 3 Ψ(t) = [y_1,y_2] = [5,2e^(3t); 1, e^(3t)] Ψ’ = A*Ψ A = Ψ’*Ψ^(-1) Ψ^(-1) = 1/(det(Ψ))*[e^(3t), -2e^(-3t); -1, 5] = 1/(3e^(3t))* [e^(3t), -2e^(-3t); -1, 5] Ψ^(-1) = [1/3, -2/3; -e^(-3t)/3, 5e^(-3t)/3] A = [0, 6e^(3t); 0, 3e^(3t)]*[1/3, -2/3; -e^(-3t)/3, 5e^(-3t)/3] = [-2, 10; -1, 5] tr[A] = -2+5 = 3 This is consistent. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"