#$&* course MTH 279 Query 25 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Determine whether the set of solutions {y_1, y_2, y_3} is linearly independent, where y_1 = [ 1, sin^2(t), 0] y_2 = [ 0, 2 - 2 cos^2(t), -2] y_3 = [ 1, 0, 1] YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Ay_1 + By_2 + Cy_3 = 0 Using row reduction on our y: [1, sin^2(t), 0, 0; 0, 2-2cos^2(t), -2, 0; 1, 0, 1, 0] we get: [1,0,1,0; 0,1, -1/sin^2(t), 0; 0, 0, 0, 0] This means that the system is linearly dependent. That is, the third solution is a linear combination of the first two. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Determine whether there is a matrix P(t) such that y_1 = [ t^2, 0 ] y_2 = [ 2t, 1 ] is a fundamental set of solutions to the equation y ' = P(t) y. If so, find such a matrix P(t). Hint: The matrix psi(t) = [y_1, y_2 ] = [ t^2, 2 t; 0, 1 ] would need to satisfy psi ' (t) = P(t) psi(t). In standard notation we could write this as follows: satisfies YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Ψ = [t^2,2t; 0,1] Ψ’ = [2t, 2; 0, 0] Ψ’ = A*Ψ A = Ψ’*Ψ^(-1) Ψ^(-1) = 1/det(Ψ)*[1, -2t; 0, t^2] = 1/(t^2)* [1, -2t; 0, t^2] = [1/t^2, -2/t; 0,1] A = [2t, 2; 0, 0]*[1/t^2, -2/t; 0,1] = [2/t, -2; 0, 0] We can plug this back in and verify that it is true. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: If the matrix psi(t) = [y_1, y_2] = [e^t, e^(-t); e^t, - e^(-t)]: What are the vector functions y_1 and y_2? Write out the system of two differential equations represented by the equation y ' = P(t) y with P(t) = [0, 1; 1, 0]. Show that y_1 and y_2 are both solutions of the equation y ' = P(t) y with P(t) = [0, 1; 1, 0]. Show that { y_1 , y_2} is a fundamental set for this equation. Show that the matrix psi(t) is a solution of the matrix equation psi ' = P(t) psi. Show that the matrix psi(t) is a fundamental matrix for the linear system of equations. Let psi_hat(t) = [ 2 e^t - e^(-t), e^t + 3 e^(-t); 2 e^t + e^(-t), e^t - 3e^(-t) ]. Find a constant matrix C such that psi_hat(t) = psi(t) * C. Based on your matrix C, is psi_hat(t) a solution matrix for the system? Based on your matrix C, is psi_hat(t) a fundamental matrix for the system? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_1 = [e^t; e^t] y_2 = [e^(-t); -e^(-t)] y_1’ = y_2 y_2’ = y_1 y_1’ = [0,1;1,0][e^(-t); -e^(-t)] = [-e^(-t); e^(-t)] y_1’ = [-e^(-t); e^(-t)] = y_2 Substitution shows that both are satisfied. W(t) = det([e^(t), e^(-t); e^(t), -e^(-t)]) = -2 ≠ 0 for all values of t, so y_1 and y_2 form a fundamental set. Ψ’ = [e^(t), -e^(-t); e^(t), e^(-t)] = [0,1;1,0]*[e^(t), e^(-t); e^(t), -e^(-t)] = [e^(t), -e^(-t); e^(t), e^(-t)] W(t) = det(Ψ) = -2 ≠ 0 for all values of t, so Ψ is a fundamental matrix. C = Ψ^(-1)*Ψ_hat C = [2,1;-1,3] Based on this, Ψ_hat is a solution matrix to the system, and is also a fundamental matrix, because it is a fundamental matrix (Ψ) multiplied by a constant matrix.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Given the system y ' = [ 1, 1; 0, -2 ] y verify that psi(t) = [ e^t, e^(-2 t); 0, e^(-2 t) ] is a fundamental matrix for the system. Find a matrix C such that psi_hat(t) = psi(t) * C is a solution matrix satisfying initial condition psi_hat(0) = I, where I is the identity matrix. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: W(t) = det(Ψ) = e^(-t) ≠ 0 for all values of t, so it is indeed a fundamental matrix of the system. Ψ_hat = Ψ*[1,-1;0,1] = [e^(t), e^(2t)-e^(t); 0, e^(-2t)] Ψ_hat(0) = [1,0; 0,1] = I confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: