Query 26

#$&*

course MTH 279

Query 26 Differential Equations*********************************************

Question: Find the solutions to y ' = A y when

A = [ 5, 3; -4, -3 ]

and

y(1) = [2; 0].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Assume that y(t) = e^(λt)*x

y’ = λxe^(λt)

Ae^(λt)x = e^(λt)(Ax)

e^(λt)(λx) = e^(λt)(Ax)

λx = Ax; x≠0

Ax - λx = 0

(A-λI)x = 0

det(A-λI) = 0

det([5-λ, 3; -4, -3-λ]) = λ^2-2λ-3 = 0

λ = -1,3

For λ = -1:

Ax = -Ix  (A+I)x=0

[5+1, 3, 0; -4, -3+1,0]

Using row reduction, we get:

[2,1,0; 0,0,0]

Our eigenvector v_1, corresponding to λ = -1 is v_1 = [-1;2].

For λ = 3:

Ax = 3x  (A-3I)x = 0;

[5-3, 3, 0; -4, -3-3, 0]

Using row reduction, we get:

[2,3,0; 0,0,0].

Our eigenvector v_2, corresponding to λ = 3, is v_2 = [-3,2].

y(t) = c_1*e^(-t)*[-1;2] + c_2*e^(3t)*[-3;2] = [-e^(-t), -3e^(3t); 2e^(-t), 2e^(3t)]*[c_1;c_2]

Imposing the initial condition y(1) = [2;0]:

[-e^(-t), -3e^(3), 0; 2e^(-1), 2e^(3),0]:

Using row reduction, we get c_1 = e, and c_2 = -e^(-3).

y(t) = [-e^(-t), -3e^(3t); 2e^(-t), 2e^(3t)]*[e; -e^(-3)]

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: Find the solutions to y ' = A y when

A = [ 4,2,0; 0,1,3; 0,0, -2 ]

and

y(0) = [-1;0;3].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Assume y(t) = e^(λt)x

y’ = λe^(λt)x

Ay = Ae^(λt)x = e^(λt)(Ax)

y’ = Ay  e^(λt)(λx) = e^(λt)(Ax)

λx = Ax

(A-λI)x = 0

det(A-λI) = 0

det([4-λ, 2, 0; 0, 1-λ, 3; 0, 0, -2-λ]) = -λ^3 + 3λ^2 + 6λ - 8 = 0

λ = -2, 1, 4

For λ = -2:

[4+2, 2, 0; 0, 1+2, 3; 0, 0, -2+2] = [6, 2, 0; 0, 0, 3; 0, 0, -3]

Using row reduction, we get [3,1,0; 0,1,1; 0, 0,0]. We interpret this as x= -y/3, and y = -z. Relating this into a vector, we get v_1=[1;-3;3].

For λ = 1:

[3,2,0; 0,0,3;0,0,-3]. Using row reduction, we get [3,2,0;0,0,3;0,0,0]. We interpret this, and put it into vector form to get v_2=[-2,3,0].

λ = 4:

[0,2,0; 0,-3,3; 0,0,-6]. Using row reduction, we get [0,0,0;0,1,0;0,0,1]. We interpret this into algebra, and find that both y and z are 0, with x unrestricted. We can choose any value of x, because it is the same vector, just different lengths. We choose x=1 for simplicity. v_3 = [1;0;0].

y(t) = [e^(-2t), -2e^(t), e^(4t); -3e^(-2t), 3e^(t), 0; 3e^(-2t), 0, 0][c_1;c_2;c_3]

Imposing the initial conditions, setting up y(t) as an augmented matrix, and using row reduction methods, we get:

c_1 = 1, c_2 = 1, c_3 = 0.

y(t) = e^(-2t), -2e^(t), e^(4t); -3e^(-2t), 3e^(t), 0; 3e^(-2t), 0, 0][1;1;0]

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: Three tanks, each full of a solution and all of equal volume V, are each connected to each of the others by two pipes. Each tank also has a third pipe through which pure water flows into it, and a fourth through which water exits.

The flow rate r through every pipe is the same.

Write the system of equations that relates the quantities Q_1, Q_2 and Q_3 representing the amount of solute in each tank as a function of time.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Each tank has an input of pure water, which contributes no solution, so does not show in the system. Each tank has two inputs, contributing solution from the other 2 tanks, which has concentration Q/V for each respective tank. Each tank also has a total of 3 outlets, which take concentration away at Q/V rate. When this is translated into a system of equations, we have Q_1’ = rQ_2/v_2 + rQ_3/v_3 - 3rQ_1/v_1 for example. We write the other two equations and set up a system in matrix form as below.

[Q_1’;Q_2’;Q_3’] = [-3r/v_1, r/v_2, r/v_3; r/v_1, -3r/v_2, r/v_3; r/v_1, r/v_2, -3r/v_3][Q_1;Q_2;Q_3]

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK"

&#Good responses. Let me know if you have questions. &#