Query 27 

#$&*

course MTH 279

Query 27 Differential Equations*********************************************

Question: Find the eigenvalues of the matrix [3, 1; -2, 1] and find the corresponding eigenvectors.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Assume the solution will take the form y(t) = e^(λt)x, so y’ = λe^(λt)x,

λe^(λt)x = Ae^(λt)x,

e^(λt)(λx) = e^(λt)(Ax),

λx = Ax,

(A-λI)x = 0, x ≠ 0.

det([3-λ, 1; -2, 1-λ]) = 0

λ^2 - 4λ + 5 = 0

λ = 2 ± i

For λ = 2 + i:

[3-2-i, 1; -2, 1-2-i] = [1-i, 1; -2, -1-i]. Using row reduction, we get [2, 1+i; 0,0]. This can be interpreted as 2x + (1+i)y = 0. Putting this into vector form, we get: v_1=[-1-i; 2].

For λ = 2-i:

[3-2+i, 1; -2, 1-2+i] = [i+i, 1; -2, -1+i]. Using row reduction, we get [2, 1-i; 0, 0]. This can be interpreted as 2x + (1-i)y = 0. Putting this into vector form, we get: v_2 = [-1+i; 2].

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: Suppose that i + 1 is an eigenvalue of a matrix A and [-1 + i, i ] is a corresponding eigenvector. Find a fundamental set of real solutions to the equation y ' = A y.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

λ_1 = 1 + i

v_1 = [-1+i; i]

y(t) = e^((1+t)t)*[-1+i; i] + X

We don’t need the second part of this solution, because we’ll break down the first eigenpair solution to two separate solutions. Using Euler’s Formula, we get:

y(t) = e^(t)(cos(t) + i*sin(t))[-1+i; i] = [-e^(t)(cos(t)+sin(t)) + i*e^(t)(cos(t)-sin(t)); -e^(t)*sin(t) + i*e^(t)*cos(t)]

This can be broken down into y(t) = [-e^(t)(cos(t) + sin(t)); -e^(t)sin(t)] + i[e^(t)cos(t)-e^(t)sin(t); e^(t)cos(t)].

Both matrix parts of this are real solutions to the original DE. We now have

y(t) = c_1*[-e^(t)(cos(t) + sin(t)); -e^(t)sin(t)] + c_2*[e^(t)cos(t)-e^(t)sin(t); e^(t)cos(t)].

We can even check that this is a fundamental set of solutions by computing the Wronskian.

W(t) = -e^(2t) ≠ 0 for all values of t.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: Solve the equation

y ' = [0, -9; 1, 0] y

with initial condition

y(0) = [6, 2].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A = [0, -9; 1, 0],

Assume the solution will take the form y(t) = e^(λt)x, so y’ = λe^(λt)x,

λe^(λt)x = Ae^(λt)x,

e^(λt)(λx) = e^(λt)(Ax),

λx = Ax,

(A-λI)x = 0, x ≠ 0.

det([-λ, -9; 1, -λ]) = 0,

λ^2+9=0,

λ = ±3i.

(A-λI) = 0.

For λ = -3i:

[3i, -9; 1, 3i]. Using row reduction, we get: [i, -3; 0, 0]. This translates to x= -3iy. In vector form, we get v_1=[3;i].

y_1 = e^(-3it)*[3;i] = (cos(3t) - i*sin(3t))[3;i] = [3cos(3t); sin(3t)] + i*[-3sin(3t); cos(3t)] = u + iv.

Both u(t) and v(t) are solutions of the system. We check that they are a fundamental set: W(t) = [u,v] = [3cos(3t), -3sin(3t); sin(3t), cos(3t)] = 3 ≠ 0 for all values of t. This shows that u and v do form a fundamental set.

y(t) = [3cos(3t), -3sin(3t); sin(3t), cos(3t)][c_1;c_2].

[3c_1cos(3t) - 3c_2sin(3t); c_1sin(3t) + c_2cos(3t)] = [6;2].

3c_1 = 6 c_1 = 2. c_2 = 2.

y(t) = 2[3cos(3t); sin(3t)] + 2[-3sin(3t);cos(3t)]

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: Find all values of mu such that any fundamental set [ y_1, y_2 ] of the system

y ' = [1, 3; mu, -2] y

have the property that the limit of the expression (y_1(t))^2 + (y_2(t))^2, as t -< infinity, is zero.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

lim(e^(-(t^2))) as t ∞ = 0.

As long as the solution takes a form of e^(-(t^2)), the limit will be 0. In order to get a solution that will take that form when squared, we’re looking for complex eigenvalues, since (±i)^2 = -1. It doesn’t really matter if we have the positive or negative eigenvalue, as long as it is complex.

We find the eigenvalues as normal,

det([1-λ, 3; µ, -2-λ]) = 0,

λ^2 + λ - (3µ + 2) = 0.

Using the quadratic formula, we get:

-1/2 ± sqrt(9+12µ)/2. We know that we need the sqrt()/2 term to equal a multiple of i. Knowing this, we set up an equality: sqrt(9+12µ)/2 = ni.

Solving, we get µ = -n^2/3 - 3/4. This means that n can be any real value. In that regard, µ can take any value such that -12µ is greater than 9.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: A particle moves in an unspecified force field in such a way that its position vector r(t) = x(t) i + y(t) j and the corresponding velocity vector v(t) = r ' (t) satisfy the equation

v ' = 2 k X v

Write this condition as a system

v ' = A v,

with v = [v_x; v_y].

If the particle starts at position r(0) = 2 i + j, v(0) = i + 2 j, find its position at t = 3 pi / 2.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I’m a bit stumped by this problem. The X in v’ = 2kXv is throwing me off. I’m not sure if that’s supposed to indicate the cross product, as in “2k crossed with v”, or if X is intended to be a separate matrix, or if 2k is even supposed to represent 2 units in the k direction. Since you’ve used i and j to denote directions in r(t), I’m assuming that k is the k direction. But the X is still throwing me off. I’ll just assume that it’s “2k crossed with v.”

@&

That is the correct assumption.

*@

[0,0,2]x[v_x, v_y, v_z] = [-2v_y, 2v_x],

v’ = [0, -2; 2, 0][v_x; v_y],

det([-λ, -2; 2, -λ]) = 0,

λ^2 + 4 = 0,

λ = ±2i.

For λ = -2i:

[2i, -2; 2, 2i]. Using row reduction, we get: [1, i; 0, 0]. We interpret this as x+iy=0. We translate this into vector form as v_1 = [1; i].

v(t) = e^(-2it)[1;i] = (cos(2t) - i*sin(2t))[1;i] = u + iv = [cos(2t); sin(2t)] + i[-sin(2t); cos(2t)]

v(t) = c_1[cos(2t); sin(2t)] + c_2[-sin(2t);cos(2t)]

v(0) = [c_1cos(0) - c_2sin(0); c_1sin(2t) + c_2cos(2t)] = [1;2],

c_1 = 1, c_2 = 2.

r(t) = ʃv(t)dt = [cos(2t) + sin(2t)/2 + c_3; sin(2t) - cos(2t)/2 + c_4].

r(0) = [1+c_3; c_4 - ½] = [2; 1].

c_3 = 1, c_4 = 3/2.

r(t) = [cos(2t) + sin(2t)/2 + 1; sin(2t) - cos(2t)/2 + 3/2]

r(3π/2) = [0; 2].

The particle’s position is 2j.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

&#Good responses. See my notes and let me know if you have questions. &#