#$&* course MTH 279 Query 28 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ********************************************* Question: Find the algebraic and geometric multiplicity of each eigenvalue and, if possible, diagonalize the matrix [7, -2, 2; 8, -1, 4; 8, 4, -1 ]. The characteristic equation of this matrix is (lambda - 3)^2 ( lambda + 1). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The characteristic equation of this matrix is not (λ-3)^2(λ+1), it is -(λ-7)(λ-3)(λ+5). Therefore, we cannot continue with this problem as stated. The algebraic multiplicity of the given λ = 3 is 2, and of λ = -1 is 1. The geometric multiplicity cannot be found. The algebraic multiplicity of the actual eigenvalues is 1 for each λ = -5, λ = 3, λ = 7. The geometric multiplicity of each of the λ is 1 as well. Since the algebraic and geometric multiplicities of each λ are equal, the matrix can be diagonalized. The diagonalized matrix is: [-5, 0, 0; 0, 3, 0; 0, 0, 7]. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ********************************************* Question: Find the algebraic and geometric multiplicity of each eigenvalue and, if possible, diagonalize the matrix [ 5, -1, 1; 14, -3, 6; 5, -2, 5 ]. The characteristic equation of this matrix is (lambda - 2)^2 ( lambda -3). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The algebraic multiplicity for λ = 2 is 2, and the algebraic multiplicity for λ = 3 is 1. We begin our search for eigenvectors with λ = 2, since we know that in order for this matrix to be diagonalizable its geometric multiplicity must be 2. For λ = 2: [3, -1, 1; 14, -5, 6; 5, -2, 5]. We make this an augmented matrix and use row reduction methods to determine [1, 0, -1; 0, 1, -4; 0, 0, 0]. We translate this into algebra and find that x = z, and y = 4z. Translated into vector form, we get [1; 4; 1]. This is our first eigenvector, but we discover that there is no more nonzero vectors that satisfy [A-λI]x = 0. This means that the geometric multiplicity of λ = 2 is just 1. Since the geometric and algebraic multiplicities don’t equate, we know that the matrix is not diagonalizable. The geometric multiplicity of λ = 3 is 1. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ********************************************* Question: Solve the system y ' = [ -4, -6; 3, 5 ] y + [e^(2 t) - 2 e^t; -e^(2 t) + e^t] YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = [ -4, -6; 3, 5 ]. det(A-λI) = det([-4-λ, -6; 3, 5-λ]) = 0, λ = -1, 2. For λ = 2: [-4-2, -6; 3, 5-2] = [-6, -6; 3, 3]. Using row reduction methods, we get [-1, -1; 0, 0]. Algebraically, this is y = -x. In vector form, this is v_1 = [1; -1]. For λ = -1: [-4+1, -6; 3, 5+1] = [-3, -6; 3, 6]. Using row reduction methods, we get [-1, -2; 0, 0]. Algebraically, this is y = -x/2. In vector form, this is v_2 = [2; -1]. y_c = c_1e^(2t)[1;-1] + c_2e^(-t)[2;-1] = [e^(2t), 2e^(-t); -e^(2t), -e^(-t)][c_1;c_2]. Now we tackle the task of finding our particular solution, y_p. g(t) = [e^(2 t) - 2 e^t; -e^(2 t) + e^t] can be broken down into e^(2t)[1;-1] + e^(t)[-2;1]. We assume that the first particular solution will come in the form u = e^(2t)a with a being a constant 2x1 matrix. u’ = 2e^(2t)a. We form the new differential equation: u’ = Au + g(t). A is still the matrix from our original DE, and g(t) is our new nonhomogeneity = e^(2t) [1;-1]. 2e^(2t)a = Ae^(2t)a + e^(2t)g, 2a = Aa + g, 2a-Aa = g, (2I-A)a = g, [6, 6; -3,-3]a = g. I’m a bit stumped, since 2 is one of our original eigenvalues, I’m not sure how we can go from here. The (2I-A) above gives us the eigenvector for eigenvalue 2. We assume the second particular solution takes the form v = e^(t)a. v’ = e^(t)a. g is [-2;1]. Plugging in, we get: e^(t)a = Ae^(t)a + e^(t)g, a = Aa + g, a-Aa = g, (I-A)a = g [5,6; -3, -4]a = [-2; 1]. a = [-1; ½]. y_p = ??? + e^(t) [-1; ½] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I’m a little confused because I came up with a particular solution that was a repeat of the eigenpair used earlier. I’m not sure where I should have gone from there.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ________________________________________ #$&*