#$&* course MTH 279 Query 30 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): As far as I know, my reasoning is sound. The limit of e^(t) goes to ∞ when t>0, and will be complex if t<0. So if s is kept constant, there are no values that lead to a convergent exponential, and if t is 0, F(s) would be 0 as well. ------------------------------------------------ Self-critique rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Using the definition of the Laplace transform, find the Laplace transform of f(t) = cos(omega t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: F(s) = ʃcos(ωt)e^(-st)dt{0,∞}. We do integration by parts and algebraic manipulation to get the form ʃcos(ωt)e^(-st)dt =[-s*cos(ωt)e^(-st)+ωsin(ωt)e^(-st)]/(ω^2+s^2). Using this integration, we now have F(s) = [(-s*cos(ωt)e^(-st)+ωsin(ωt)e^(-st))/(ω^2+s^2)]{0,∞}. When we evaluate this using our integration bounds, we get: F(s) = 0 - (-s/(ω^2+s^2)) = s/(ω^2+s^2). confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Using the definition of the Laplace transform, find the Laplace transform of f(t) = e^(3 t) sin(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: F(s) = ʃe^(3t)sin(t)e^(-st)dt{0,∞} = ʃe^((3-s)t)sin(t)dt{0,∞}. α=3-s. F(s) = ʃe^(αt)sin(t)dt{0,∞}. Using integration by parts, and algebraic manipulation, we get: F(s) = [-e^(αt)cos(t)+αe^(αt)sin(t)]/(1+α^2){0,∞}. By inspection, we know that in order for the limit of the improper integral to converge, α must be negative. If α=3-s, we know that s>3 in order for the limit to converge. With this in mind, we rewrite as so: F(s) = [-e^(-(s-3)t)cos(t) + -(s-3)e^(-(s-3)t)sin(t)]/(1+(-(s-3))^2){0,∞}. Solving at our bounds of integration, we find: F(s) = 0 - (-1/(1+(s-3)^2) = 1/(1+(s-3)^2). confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!