#$&* course MTH 279 Query 31 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Using, if necessary, the table in your text, find the Laplace transform of e^(2 t) cos(3 t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: F(s) = ʃe^(2t)cos(3t)e^(-st)dt{0,∞}. To save time, I’m going to drop the bounds and add them back at the end, but they are implied from this step to the end. F(s) = ʃe^(αt)cos(bt)dt; α=2-s, b=3. We know that α<0, so s>2. α = -(s-2). We use integration by parts to compute the integral, and have F(s) = e^(αt)sin(bt)/(b^2+α^2) + αe^(αt)cos(bt)/(b^2+α^2). We substituting α and b in, and we get: F(s) = [e^(-(s-2)t)sin(3t)/(9+(s-2)^2) + -(s-2)e^(-(s-2)t)cos(3t)/(9+(s-2)^2)]{0,∞}. Evaluating at the bounds, we now have: F(s) = (s-2)/(9+(s-2)^2). confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Using, if necessary, the table in your text, find the inverse Laplace transform of 10 / (s^2 + 25) + 4 / (s - 3). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The inverse Laplace, denoted L^(-1)(s) = f(t) = L^(-1)(10/(s^2+25)) + L^(-1)(4/(s-3)). We look up inverse Laplace transforms and find that the first inverse closely matches that of L(sin(ωt)) = ω/(s^2+ω^2) and the second closely matches L(e^(αt)) = 1/(s-α). Both are off by a constant multiplier (different in each respective case). Using algebra: f(t) = L^(-1)((5*2)/(s^2+5^2)) + L^(-1)((1*4)/(s-3)). We can draw the constants out, f(t) = 2L^(-1)(5/(s^2+5^2)) + 4L^(-1)(1/(s-3)). f(t) = 2sin(5t)+4e^(3t). confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think I did this correctly. It’s hard to mess up tabular answers. The only thing I’m unsure of is my notation. I think it’s self-explanatory, even if not entirely correct, but I believe it is correct, nonetheless. ------------------------------------------------ Self-critique rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Using, if necessary, the table in your text, find the inverse Laplace transform of 1 / (s + 1)^3 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This F(s) takes the form of n!/(s-α)^(n+1) with n = 2, α=-1. The inverse gives f(t) = ½ * e^(-t)t^2. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Using, if necessary, the table in your text, find the inverse Laplace transform of (2 s - 3) / (s^2 - 3 s + 2). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This F(s) takes the form of (s-α)/((s-α)^2+ω^2). With some algebraic manipulation, we can say that F(s) = 2(s-3/2)/((s-3/2)^2-(1/2)^2). This means that α = 3/2, and ω=i/2. f(t) = 2e^(αt)cos(ωt) = 2e^(3t/2)cos(it/2) = e^(3t/2)cosh(t/2). Another way to do this is to use partial fraction decomposition to get: F(s) = (2s-3)/(s^2-3s+2) = 1/(s-2) + 1/(s-1). L^(-1)(F(s)) = e^(2t) + e^(t). confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I actually did the first part of this solution by hand, and at the end when I decided to check my work, I used WolframAlpha to find the inverse laplace for the given F(s), and it gave me the answer in the form e^(t)+e^(2t). I was curious, so I entered my f(t) = e^(3t/2)cosh(t/2) to find the laplace transform for this, and it works out to our given F(s). So this F(s) has two inverse solutions, I guess. I thought it was interesting. Is there any special reason why this is so? Is there any significance to this instance?