B3

#$&*

course Math 158

Copy and paste this document into a text editor, insert your responses and submit using the Submit_Work_Form.If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

002. Describing Graphs

*********************************************

Question: `q001. You will frequently need to describe the graphs you have constructed in this course. This exercise is designed to get you used to some of the terminology we use to describe graphs. Please complete this exercise and email your work to the instructor. Note that you should do these graphs on paper without using a calculator. None of the arithmetic involved here should require a calculator, and you should not require the graphing capabilities of your calculator to answer these questions.

Problem 1. We make a table for y = 2x + 7 as follows: We construct two columns, and label the first column 'x' and the second 'y'. Put the numbers -3, -2, -1, -, 1, 2, 3 in the 'x' column. We substitute -3 into the expression and get y = 2(-3) + 7 = 1. We substitute -2 and get y = 2(-2) + 7 = 3. Substituting the remaining numbers we get y values 5, 7, 9, 11 and 13. These numbers go into the second column, each next to the x value from which it was obtained. We then graph these points on a set of x-y coordinate axes. Noting that these points lie on a straight line, we then construct the line through the points.

Now make a table for and graph the function y = 3x - 4.

Identify the intercepts of the graph, i.e., the points where the graph goes through the x and the y axes.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: y= 3x -4

X y

-3 -4

-2 -10

-1 -7

1 -1

2 2

3 5

X intercept is 4/3 and y intercept is -4.

Self Critique is 3. I teach this to my classes by using a coverup method. You just have to remember to move 3x to the left. Basically putting it in standard form. I did not use a calculator.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe graph goes through the x axis when y = 0 and through the y axis when x = 0.

The x-intercept is therefore when 0 = 3x - 4, so 4 = 3x and x = 4/3.

The y-intercept is when y = 3 * 0 - 4 = -4. Thus the x intercept is at (4/3, 0) and the y intercept is at (0, -4).

Your graph should confirm this.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q002. Does the steepness of the graph in the preceding exercise (of the function y = 3x - 4) change? If so describe how it changes.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

My slope is increasing.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

.

Analogies:

When you walk up a hill, typically as you approach the top the slope starts to level off--it gets less steep.

When you go up a ramp the steepness stays the same until you get to the end of the ramp.

When you start climbing a hill, typically it gets steeper for awhile, the stays at about a constant slope, then gets less steep toward the top.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q003. What is the slope of the graph of the preceding two exercises (the function is y = 3x - 4;slope is rise / run between two points of the graph)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Slope on problem 1 was 2 and on my problem was 3.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aBetween any two points of the graph rise / run = 3.

For example, when x = 2 we have y = 3 * 2 - 4 = 2 and when x = 8 we have y = 3 * 8 - 4 = 20. Between these points the rise is 20 - 2 = 18 and the run is 8 - 2 = 6 so the slope is rise / run = 18 / 6 = 3.

Note that 3 is the coefficient of x in y = 3x - 4.

Note the following for reference in subsequent problems: The graph of this function is a straight line. The graph increases as we move from left to right. We therefore say that the graph is increasing, and that it is increasing at constant rate because the steepness of a straight line doesn't change.

EXPANDED EXPLANATION

Any student who has completed Algebra I and Algebra II should be familiar with slope calculations. Most students are. However a number of students appear to be very fuzzy on the concept, and I suspect that not all prerequisite courses cover this concept adequately (though I am confident that it's done well at VHCC). Also a number of students haven't taken a math course in awhile, and might simply be a bit rusty with this idea. In any case the following expanded explanation might be helpful to some students:

Slope = rise / run.

The rise between two graph points is the change in the y coordinate. The run is the change in the x coordinate.

Our function is y = 3 x - 4.

When x = 2, we substitute 2 for x to get y = 3 * 2 - 4, which is equal to 2.

When x = 8, we substitute 8 for x to get y = 3 * 8 - 4, which is equal to 20.

The graph therefore contains the points (2, 2) and (8, 20).

You should have made a graph showing these points. If not you should do so now.

As you go from point to point your y coordinate goes from 2 to 20. So the 'rise' between the points is 20 - 2 = 18.

Your x coordinate goes from 2 to 8. So the 'run' between the points is 8 - 2 = 6.

The slope is rise / run = 18 / 6 = 3.

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q004. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: y = x^2

x y

-3 9

-2 4

-1 1

0 0

1 1

2 4

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: I feel that it is increasing.

&#Your response did not agree with the given solution in all details, and you should therefore have addressed the discrepancy with a full self-critique, detailing the discrepancy and demonstrating exactly what you do and do not understand about the parts of the given solution on which your solution didn't agree, and if necessary asking specific questions (to which I will respond).

&#

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0.

Would you say that the graph is increasing or decreasing? increasing

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: It is increasing at an increasing rate.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

NOTE FOR STUDENT WITH CALCULUS BACKGROUND (students who haven't had calculus should ignore this; this explanation is optional even for students who have had calculus)

In terms of the calculus, the derivative function is easily seen to be y ' = 2 x, which is positive and increasing, and which therefore implies an increasing slope.

Since in this case the slope is negative, which implies that the function is decreasing, the increasing slope therefore implies that the rate of decrease is decreasing. The value of the function is therefore decreasing at a decreasing rate.

Another terminology which is standard in calculus: If the slope is increasing then the shape of the graph is concave upward. So we could describe this graph as decreasing and concave upward.

This could also be explained in terms of the second derivative, y '' = 2, which is positive everywhere. The positive second derivative implies that the graph is concave up.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

"

&#This also requires a self-critique.

&#

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0.

Would you say that the graph is increasing or decreasing? increasing

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: It is increasing at an increasing rate.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

NOTE FOR STUDENT WITH CALCULUS BACKGROUND (students who haven't had calculus should ignore this; this explanation is optional even for students who have had calculus)

In terms of the calculus, the derivative function is easily seen to be y ' = 2 x, which is positive and increasing, and which therefore implies an increasing slope.

Since in this case the slope is negative, which implies that the function is decreasing, the increasing slope therefore implies that the rate of decrease is decreasing. The value of the function is therefore decreasing at a decreasing rate.

Another terminology which is standard in calculus: If the slope is increasing then the shape of the graph is concave upward. So we could describe this graph as decreasing and concave upward.

This could also be explained in terms of the second derivative, y '' = 2, which is positive everywhere. The positive second derivative implies that the graph is concave up.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

"

&#This also requires a self-critique.

&#

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

*********************************************

Question: `q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0.

Would you say that the graph is increasing or decreasing? increasing

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: It is increasing at an increasing rate.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

NOTE FOR STUDENT WITH CALCULUS BACKGROUND (students who haven't had calculus should ignore this; this explanation is optional even for students who have had calculus)

In terms of the calculus, the derivative function is easily seen to be y ' = 2 x, which is positive and increasing, and which therefore implies an increasing slope.

Since in this case the slope is negative, which implies that the function is decreasing, the increasing slope therefore implies that the rate of decrease is decreasing. The value of the function is therefore decreasing at a decreasing rate.

Another terminology which is standard in calculus: If the slope is increasing then the shape of the graph is concave upward. So we could describe this graph as decreasing and concave upward.

This could also be explained in terms of the second derivative, y '' = 2, which is positive everywhere. The positive second derivative implies that the graph is concave up.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

"

&#This also requires a self-critique.

&#

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

@&

Check my notes. I'm not sure you've completed the entire document, and some of your answers should have been self-critiqued.

*@