#$&* course Math 158 If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.Your solution, attempt at solution:
.............................................
Given Solution: * * Starting with (1-2x)^(1/3)-1=0 add 1 to both sides to get (1-2x)^(1/3)=1 then raise both sides to the power 3 to get [(1-2x)^(1/3)]^3 = 1^3. Since [(1-2x)^(1/3)]^3 = (1 - 2x) ^( 1/3 * 3) = (1-2x)^1 = 1 - 2x we have 1-2x=1. Adding -1 to both sides we get -2x=0 so that x=0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * 1.4.28 (was 1.4.18). Explain how you found the real solutions of the equation sqrt(3x+7) + sqrt(x+2) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: You will subtract sqrt(x +2) from both sides. You will have sqrt(3x +7) = -sqrt(x+2) +1. We square both sides. You will have (3x +7)^2 = (sqrt(x+2) +1)^2. You will have 3x + 7= x + 2 - 2sqrt (x+ 2) + 1. Simplify: 3x + 7 = x + 3 - 2sqrt(x +2). You will subtract x + 3 from both sides. You get 3x + 7 - x - 3 = -2sqrt (x + 2). You will collect like terms: 2x + 4 = -2sqrt (x +2). You will square both sides to get: 4x^2 + 16x + 16 =4x + 8. You will subtract 4x + 8 from both sides to get 4x^2 +12x+ 8 = 0. You will factor to get: 4(x^2 + 3x + 2)= 0. Factor totally: 4(x+2)(x+1) = 0. You will divide by 4. You will make two problems. x + 2 = 0 so x = -2. Problem 2: x + 1 = 0. x = -1. Your solution is -2, -1. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * Starting with sqrt(3x+7)+sqrt(x+2)=1 we could just square both sides, recalling that (a+b)^2 = a^2 + 2 a b + b^2. This would be valid but instead we will add -sqrt(x+2) to both sides to get a form with a square root on both sides. This choice is arbitrary; it could be done either way. We get sqrt(3x+7)= -sqrt(x+2) + 1 . Now we square both sides to get sqrt(3x+7)^2 =[ -sqrt(x+2) +1]^2. Expanding the right-hand side using (a+b)^2 = a^2 + 2 a b + b^2 with a = -sqrt(x+2) and b = 1: 3x+7= x+2 - 2sqrt(x+2) +1. Note that whatever we do we can't avoid that term -2 sqrt(x+2). Simplifying 3x+7= x+ 3 - 2sqrt(x+2) then adding -(x+3) we have 3x+7-x-3 = -2sqrt(x+2). Squaring both sides we get (2x+4)^2 = (-2sqrt(x+2))^2. Note that when you do this step you square away the - sign. This can result in extraneous solutions. We get 4x^2+16x+16= 4(x+2). Applying the distributive law we have 4x^2+16x+16=4x+8. Adding -4x - 8 to both sides we obtain 4x^2+12x+8=0. Factoring 4 we get 4*((x+1)(x+2)=0 and dividing both sides by 4 we have (x+1)(x+2)=0 Applying the zero principle we end up with (x+1)(x+2)=0 so that our potential solution set is x= {-1, -2}. Both of these solutions need to be checked in the original equation sqrt(3x+7)+sqrt(x+2)=1 As it turns out: the solution -1 gives us sqrt(4) + sqrt(1) = 1 or 2 + 1 = 1, which isn't true, while the solution -2 gives us sqrr(1) + sqrt(0) = 1 or 1 + 0 = 1, which is true. • x = -1 is an extraneous solution that was introduced in our squaring step. • Thus our only solution is x = -2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * 1.4.40 (was 1.4.30). Explain how you found the real solutions of the equation x^(3/4) - 9 x^(1/4) = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We factor x^1/4 from both sides. This gives us x^(1/4)(x^(1/2) -9 = 0. We break this into 2 problems. Problem 1: x^(1/4) = 0. This is x = 0. Problem 2: x^(1/2) - 9 = 0. You will add 9 to both sides to get: x^(1/2) = 9. You will square both answers to get: 0, 81. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * Here we can factor x^(1/4) from both sides: Starting with x^(3/4) - 9 x^(1/4) = 0 we factor as indicated to get x^(1/4) ( x^(1/2) - 9) = 0. Applying the zero principle we get x^(1/4) = 0 or x^(1/2) - 9 = 0 which gives us x = 0 or x^(1/2) = 9. Squaring both sides of x^(1/2) = 9 we get x = 81. • So our solution set is {0, 81). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * 1.4.46 (was 1.4.36). Explain how you found the real solutions of the equation x^6 - 7 x^3 - 8 =0 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I am confused as to why you substituted the a. I know how to do this on the calculator by using y = and 2nd graph to get the solution (-1, 2) confidence rating #$&*: Lost ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * Let a = x^3. Then a^2 = x^6 and the equation x^6 - 7x^3 - 8=0 becomes a^2 - 7 a - 8 = 0. This factors into (a-8)(a+1) = 0, with solutions a = 8, a = -1. Since a = x^3 the solutions are • x^3 = 8 and • x^3 = -1. We solve these equations to get • x = 8^(1/3) = 2 and • x = (-1)^(1/3) = -1. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating:
.............................................
Given Solution: * * Let u = sqrt(x^2 - 3x). Then u^2 = x^2 - 3x, and the equation is u^2 - u = 2. Rearrange to get u^2 - u - 2 = 0. Factor to get (u-2)(u+1) = 0. • Solutions are u = 2, u = -1. Substituting x^2 - 3x back in for u we get sqrt(x^2 - 3 x) = 2 and sqrt(x^2 - 3 x) = -1. The second is impossible since sqrt can't be negative. The first gives us sqrt(x^2 - 3x) = 2 so x^2 - 3x = 4. Rearranging we have x^2 - 3x - 4 = 0 so that (x-4)(x+1) = 0 and x = 4 or x = -1. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * 1.4.92 \ 90 (was 1.4.66). Explain how you found the real solutions of the equation x^4 + sqrt(2) x^2 - 2 = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I am not sure how to work this one. confidence rating #$&*: 0 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * Starting with x^4+ sqrt(2)x^2-2=0 we let u=x^2 so that u^2 = x^4 giving us the equation u^2 + sqrt(2)u-2=0 Using the quadratic formula u=(-sqrt2 +- sqrt(2-(-8))/2 so u=(-sqrt2+-sqrt10)/2 Note that u = (-sqrt(2) - sqrt(10) ) / 2 is negative, and u = ( -sqrt(2) + sqrt(10) ) / 2 is positive. u = x^2, so u can only be positive. Thus the only solutions are the solutions to the equation come from x^2 = ( -sqrt(2) + sqrt(10) ) / 2. The solutions are x = sqrt( ( -sqrt(2) + sqrt(10) ) / 2 ) and x = -sqrt( ( -sqrt(2) + sqrt(10) ) / 2 ). Approximations to three significant figures are • x = .935 and • x = -.935. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: