Assignment 13

#$&*

course Math 158

11:44 a.m. on 6/23/2012

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

013. `* 13

*********************************************

Question: * 1.5.34 (was 1.5.24). How did you write the interval [0, 1) using an inequality with x? Describe your illustration using the number line.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You will have a closed dot at 0 and open dot at 1 with a solid line between the numbers.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * My notes here show the half-closed interval [0, 1).

When sketching the graph you would use a filled dot at x = 0 and an unfilled dot at x = 1, and you would fill in the line from x = 0 to x = 1. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.5.40 (was 1.5.30). How did you fill in the blank for 'if x < -4 then x + 4 _<___ 0'?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: x cannot be -4, thus the answer is <.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * if x<-4 then x cannot be -4 and x+4 < 0.

Algebraically, adding 4 to both sides of x < -4 gives us x + 4 < 0. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.5.46 (was 1.5.36). How did you fill in the blank for 'if x > -2 then -4x _<___ 8'?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You will divide by -4 so the sign will reverse.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * if x> -2 then if we multiply both sides by -4 we get

-4x <8.

Recall that the inequality sign has to reverse if you multiply or divide by a negative quantity. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.5.58 (was 1.5.48). Explain how you solved the inquality 2x + 5 >= 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You would subtract 5 from both sides. You have 2x > = -4. You divide by 2x. Your solution is x>= -2.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

2x+5>= 1 we add -5 to both sides to get

2x>= -4, the divide both sides by 2 to get the solution

x >= -2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.5.64 (was 1.5.54). Explain how you solved the inquality 8 - 4(2-x) <= 2x.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You will distribute 1st. You will get 8 -8 + 4x <= 2x. Collect terms. You have 4x <= 2x. Subtract 2x. You have 2x <= 0. Divide by 2. x<=0.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * 8- 4(2-x)<= 2x. Using the distributive law:

8-8+4x<= 2x . Simplifying:

4x<=2x . Subtracting 2x from both sides:

2x<=0. Multiplying both sides by 1/2 we get

x<=-0 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.5.76 (was 1.5.66). Explain how you solved the inquality 0 < 1 - 1/3 x < 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You make 2 problems. Problem 1: 0 < 1 -1/3x. You will subtract 1 from both sides. You will have -1<-1/3x. You will multiply by -3. You must reverse the sign. You have 3>x. Problem 2: 1 - 1/3x < 1. You will subtract 1 from both sides. You have -1/3x < 0. You will multiply by -3 and reverse the sign. You get x > 0. Answer: 0 < x<3.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

0<1- 1/3x<1 we can separate this into two inequalities, both of which must hold:

0< 1- 1/3x and 1- 1/3x < 1. Subtracting 1 from both sides we get

-1< -1/3x and -1/3x < 0. We solve these inequalitites separately:

-1 < -1/3 x can be multiplied by -3 to get 3 > x (multiplication by the negative reverses the direction of the inequality)

-1/3 x < 0 can be multiplied by -3 to get x > 0.

So our inequality can be written 3 > x > 0. This is not incorrect but we usually write such inequalities from left to right, as they would be seen on a number line. The same inequality is expressed as

0 < x < 3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.5.94 (was 1.5.84). Explain how you found a and b for the conditions 'if -3 < x < 3 then a < 1 - 2x < b.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: Add 1 to both sides. 1 +6> 1 -2x > 1 -6. You get 7 > 1 -2x> -5. You can rewrite it as -5 < 1 - 2x < 7

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Adding 1 to each expression gives us

1 + 6 > 1 - 2x > 1 - 6, which we simplify to get

7 > 1 - 2x > -5. Writing in the more traditional 'left-toright' order:

-5 < 1 - 2x < 7. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.5.106 (was 1.5.96). Explain how you set up and solved an inequality for the problem. Include your inequality and the reasoning you used to develop the inequality. Problem (note that this statement is for instructor reference; the full statement was in your text) commision $25 + 40% of excess over owner cost; range is $70 to $300 over owner cost. What is range of commission on a sale?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: x = owner cost. 70 < x < 300. 40% is the excess amount. . 40 * 70 < .40x < .40* 300 and $25 + 40% of cost is the range. You get 25 + .40 *70 < 25 + .40x > 25 + .40 *300. Solution: 53 < 25 + .40x < 145.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * If x = owner cost then

70 < x < 300.

.40 * owner cost is then in the range

.40 * 70 < .40 x < .40 * 300 and $25 + 40% of owner cost is in the range

25 + .40 * 70 < 25 + .40 x < 25 + .40 * 300 or

25 + 28 < 25 + .40 x < 25 + 120 or

53 < 25 + .40 x < 145. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.5.123 \ 112. Why does the inequality x^2 + 1 < -5 have no solution?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You subtract 1 from both sides to get x^2 < -6. You cannot take the sqrt of a negative number so there is no solution.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: x^2 +1 < -5

x^2 < -4

x < sqrt -4

can't take the sqrt of a negative number

INSTRUCTOR COMMENT: Good.

Alternative: As soon as you got to the step x^2 < -4 you could have stated that there is no such x, since a square can't be negative. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. Let me know if you have any questions. &#