Assignment 14

#$&*

course Math 158

11:46 a.m. 6/23/12

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

014. `* 14

*********************************************

Question: * 1.6.12 (was 1.6.6). Explain how you found the real solutions of the equation | 1 - 2 z | + 6 = 9.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You will subtract 6 from both sides. abs( 1 - 2z) = 3. You will make 2 problems. Problem 1: abs(1 - 2z) = 3. You will subtract 1. You have -2z = 2. Your answer is z = -1. Problem 2: abs(1 - 2z) = -3. You will subtract 1. You have -2z = -4. You divide by -2. Your solution is 2. Solution: (-1, 2)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

| 1-2z| +6 = 9 we add -6 to both sides to get

| 1 - 2z| = 3. We then use the fact that | a | = b means that a = b or a = -b:

1-2z=3 or 1-2z= -3 Solving both of these equations:

-2z = 2 or -2z = -4 we get

z= -1 or z = 2 We express our solution set as

{-1, 2} **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.6.30 (was 1.6.24). Explain how you found the real solutions of the equation | x^2 +3x - 2 | = 2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You make 2 separate problems. Problem 1: abs(x^2 + 3x -2) = 2. You subtract 2 from both sides. You have x^2 +3x -4 = 0. You factor: (x + 4)(x - 1) = 0. Your solution will be (-4, 1). Problem 2: You will have abs(x^2 + 3x -2) = -2. You will add 2 to both sides. You will have x^2 + 3x= 0. You will factor x(x + 3 )= 0. The solution will be (0,-3).

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * My note here might be incorrect.

If the equation is | x^2 +3x -2 | = 2 then we have

x^2 + 3x - 2 = 2 or x^2 + 3x - 2 = -2.

In the first case we get x^2 + 3x - 4 = 0, which factors into (x-1)(x+4) = 0 with solutions x = 1 and x = -4.

In the second case we have x^2 + 3x = 0, which factors into x(x+3) = 0, with solutions x = 0 and x = -3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.6.40 \ 36 (was 1.6.30). Explain how you found the real solutions of the inequality | x + 4 | + 3 < 5.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You will subtract 3 from both sides. You get abs(x +4) < 2.

You have -2

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: | x+4| +3 < 5

| x+4 | < 2

-2 < x+4 < 2

-6 < x < -2

STUDENT QUESTION

I was hoping to see more in the given solution as to why we move 2 to the left of the inequality. I think there is a formula for that, but I don’t remember what it is.

Could you explain why we move the 2?

INSTRUCTOR RESPONSE

The 2 doesn't get moved. To understand what's going on:

Think about the inequality

| A | < = 4.

This is clearly true if A = 4, 3, 2, 1 or 0.

It's also clearly true if A = -1, -2, -3 or -4.

It's not true if A = -5 or -6 or -7, etc..

So

| A | < = 4 means the same thing as

-4 <= A <= 4.

More generally

| A | < B says the same thing as

- B < A < B.

In your solution you said that

| x + 4 | + 3 < 5 add -3 to both sides give us

x + 4 < 2

This isn't so. The | | signs don't go away when you add -3 to both sides. You get

| x + 4 | < 2, which means the same thing as

-2 < x + 4 < 2 because of the rule we just say, that | A | < B means -B < A < B.

Correcting your solution:

| x + 4 | + 3 < 5 add -3 to both sides

| x + 4 | < 2 add -2 to the left of the inequality

-2 < x + 4 < 2 apply the rule for | A | < B with A = x + 4 and B = 2

-2-4 < x+4-4 < 2-4 simplify to get

-6 < x < -2

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.6.52 \ 48 (was 1.6.42). Explain how you found the real solutions of the inequality | -x - 2 | >= 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You make two separate problems. Problem 1: -x -2 >= 1. You will add 2 to both sides. You will flip the sign because you divide by negative. x<= -3.

Problem 2: -x - 2 >= -1. You will add 2 to both sides. Then divide by -1 which means you have to flip the sign. Solution: x <= - 1.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Correct solution:

| -x -2 | >= 1 Since | a | > b means a > b or a < -b (note the word 'or') we have

-x-2 >= 1 or -x -2 <= -1. These inequalities are easily solved to get

-x >= 3 or -x <= 1 or

x <= -3 or x >= -1.

So our solution is

{-infinity, -3} U {-1, infinity}. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good work. Let me know if you have questions. &#