Query 3

#$&*

course Phy 121

If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

003. `Query 3

*********************************************

Question: What do the coordinates of two points on a graph of position vs. clock time tell you about the motion of the object? What can you reason out once you have these coordinates?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The coordinates of two points on a graph of position vs. clock time tells you the position of an object at a given time. If you are given two points, you can find the slope of the graph, also known as the average velocity.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: The coordinates a point on the graph include a position and a clock time, which tells you where the object whose motion is represented by the graph is at a given instant. If you have two points on the graph, you know the position and clock time at two instants.

Given two points on a graph you can find the rise between the points and the run.

On a graph of position vs. clock time, the position is on the 'vertical' axis and the clock time on the 'horizontal' axis.

• The rise between two points represents the change in the 'vertical' coordinate, so in this case the rise represents the change in position.

• The run between two points represents the change in the 'horizontal' coordinate, so in this case the run represents the change in clock time.

The slope between two points of a graph is the 'rise' from one point to the other, divided by the 'run' between the same two points.

• The slope of a position vs. clock time graph therefore represents rise / run = (change in position) / (change in clock time).

• By the definition of average velocity as the average rate of change of position with respect to clock time, we see that average velocity is vAve = (change in position) / (change in clock time).

• Thus the slope of the position vs. clock time graph represents the average velocity for the interval between the two graph points.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question:

Pendulums of lengths 20 cm and 25 cm are counted for one minute. The counts are respectively 69 and 61. To how many significant figures do we know the difference between these counts?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: We know the difference of these counts to one significant figure.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question:

What are some possible units for position? What are some possible units for clock time? What therefore are some possible units for rate of change of position with respect to clock time?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: Possible units for position are m, cm, in, mi. Possible units for clock time are s, min, hr. So, we could have m/s, m/hr, in/min, mi/hr.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: What fraction of the Earth's diameter is the greatest ocean depth?

What fraction of the Earth's diameter is the greatest mountain height (relative to sea level)?

On a large globe 1 meter in diameter, how high would the mountain be, on the scale of the globe? How might you construct a ridge of this height?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

????Where did you find this information? I did all of the text problems, but didn’t see one like this

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The greatest mountain height is a bit less than 10 000 meters. The diameter of the Earth is a bit less than 13 000 kilometers.

Using the round figures 10 000 meters and 10 000 kilometers, we estimate that the ratio is 10 000 meters / (10 000 kilometers). We could express 10 000 kilometers in meters, or 10 000 meters in kilometers, to actually calculate the ratio. Or we can just see that the ratio reduces to meters / kilometers. Since a kilometer is 1000 meters, the ratio is 1 / 1000.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery Principles of Physics and General College Physics: Summarize your solution to the following:

Find the sum

1.80 m + 142.5 cm + 5.34 * 10^5 `micro m

to the appropriate number of significant figures.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1.80m + 1.425m + .534m = 3.76m

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** 1.80 m has three significant figures (leading zeros don't count, neither to trailing zeros unless there is a decimal point; however zeros which are listed after the decimal point are significant; that's the only way we have of distinguishing, say, 1.80 meter (read to the nearest .01 m, i.e., nearest cm) and 1.000 meter (read to the nearest millimeter).

Therefore no measurement smaller than .01 m can be distinguished.

142.5 cm is 1.425 m, good to within .00001 m.

5.34 * `micro m means 5.34 * 10^-6 m, so 5.34 * 10^5 micro m means (5.34 * 10^5) * 10^-6 meters = 5.34 + 10^-1 meter, or .534 meter, accurate to within .001 m.

Then theses are added you get 3.759 m; however the 1.80 m is only good to within .01 m so the result is 3.76 m. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qQuery Principles of Physics and General College Physics: Summarize your solution to the following:

Find the sum

1.80 m + 142.5 cm + 5.34 * 10^5 `micro m

to the appropriate number of significant figures.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1.80m + 1.425m + .534m = 3.76m

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** 1.80 m has three significant figures (leading zeros don't count, neither to trailing zeros unless there is a decimal point; however zeros which are listed after the decimal point are significant; that's the only way we have of distinguishing, say, 1.80 meter (read to the nearest .01 m, i.e., nearest cm) and 1.000 meter (read to the nearest millimeter).

Therefore no measurement smaller than .01 m can be distinguished.

142.5 cm is 1.425 m, good to within .00001 m.

5.34 * `micro m means 5.34 * 10^-6 m, so 5.34 * 10^5 micro m means (5.34 * 10^5) * 10^-6 meters = 5.34 + 10^-1 meter, or .534 meter, accurate to within .001 m.

Then theses are added you get 3.759 m; however the 1.80 m is only good to within .01 m so the result is 3.76 m. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

@&

Good.

Don't worry about the question you couldn't find information for. That's from the optional text. Usually these problems are labeled 'openstax' or 'optional openstax'. They are good problems, but totally optional for students using the Giancoli text.

*@