course Mth 163 ????g????V??assignment #005
......!!!!!!!!...................................
12:19:05 `q001. Note that this assignment has 8 questions Evaluate the function y = x^2 for x values -3, -2, -1, 0, 1, 2, and 3. What are your y values?
......!!!!!!!!...................................
RESPONSE --> 9, 4, 1, 0, 1, 4, 9 confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:24:06 `q002. Evaluate the function y = 2^x for x values -3, -2, -1, 0, 1, 2, and 3. What are your y values?
......!!!!!!!!...................................
RESPONSE --> 1/8, 1/4, 1/2, 0, 2, 4, 8 confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:26:53 `q003. Evaluate the function y = x^-2 for x values -3, -2, -1, 0, 1, 2, and 3. What are your y values?
......!!!!!!!!...................................
RESPONSE --> -1/9, -1/4, -1/2, 0, 1/2, 1/4, 1/9 confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:28:58 `q004. Evaluate the function y = x^3 for x values -3, -2, -1, 0, 1, 2, and 3. What are your y values?
......!!!!!!!!...................................
RESPONSE --> -27, -8, -1, 0, 1, 8, 27 confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:53:02 `q005. Sketch graphs for y = x^2, y = 2^x, y = x^-2 and y = x^3, using the values you obtained in the preceding four problems. Describe the graph of each function.
......!!!!!!!!...................................
RESPONSE --> The first is a wide evenly distributed parabola. The second is a strange sideways skinny to wide ""s"" shape around the (0,0) coordinate. The third graph is an evenly distributed sideways ""s"" around the (0,0) coordinate. The fourth is a tall skinny parabola. confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:57:30 `q006. Make a table for y = x^2 + 3, using x values -3, -2, -1, 0, 1, 2, 3. How do the y values on the table compare to the y values on the table for y = x^2? How does the graph of y = x^2 + 3 compare to the graph of y = x^2?
......!!!!!!!!...................................
RESPONSE --> They are smilar parabolas except that the the parabola for y = x^2 + 3 has a vertex at (0, 3). confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:06:29 `q007. Make a table for y = (x -1)^3, using x values -3, -2, -1, 0, 1, 2, 3. How did the values on the table compare to the values on the table for y = x^3? Describe the relationship between the graph of y = (x -1)^3 and y = x^3.
......!!!!!!!!...................................
RESPONSE --> y = x^3 has a skinny ""s"" shape increasing faster and faster past the (0,0) coordinate and decresing faster and faster below the (0,0) coordinate and it is equivalent in rate separation. While the data obtained for y = (x-1)^3 does not have a (0,0) coordinate and is more spread apart in decrease and increase about the midpoint. The graph is set farther to the right as well. But it is still in a ""s"" shape increasing on the right side faster and faster and decreasing faster and faster on the other side. confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:15:38 `q008. Make a table for y = 3 * 2^x, using x values -3, -2, -1, 0, 1, 2, 3. How do the values on the table compare to the values on the table for y = 2^x? Describe the relationship between the graph of y = 3 * 2^x and y = 2^x.
......!!!!!!!!...................................
RESPONSE --> Y values for y = 3(2^2) equals 3/8, 3/4, 1.5, 3, 6, 12, 24 Y values for y = 2^x equals 1/8, 1/4, 1/2, 0, 2, 4, 8 They are similar in shape and increase rate except that the graph for y = 3(2^2) goes through the y axis at 3 and then increases faster and faster. The other graph increases and then decrease to the (0,0) coordinate and then increases faster and faster. confidence assessment: 3
................................................."