#$&* course Mth 151 All this work har to be done on papper so it was difficult to show my workbut I feel that i have a good understanding but im going to have to pratice more on this befor the test to avopid silly mistakes
.............................................
Given Solution: It is possible that p is true and q is true. Another possibility is that p is true and q is false. A third possibility is that p is false and q is true. A fourth possibility is that p is false and q is false. These possibilities can be listed as TT, TF, FT and FF, where it is understood that the first truth value is for p and the second for q. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating #$&* ********************************************* Question: `q002. For each of the for possibilities TT, TF, FT and FF, what is the truth value of the compound statement p ^ q ? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: TT makes it true confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: p ^ q means 'p and q', which is only true if both p and q are true. In the case TT, p is true and q is true so p ^ q is true. In the case TF, p is true and q is false so p ^ q is false. In the case FT, p is false and q is true so p ^ q is false. In the case FF, p is false and q is false so p ^ q is false. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating #$&* ********************************************* Question: `q004. For each of the possible combinations TT, TF, FT, FF, what is the truth value of the proposition p ^ ~q? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: TF Makes it true the rest make it false confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: For TT we have p true, q true so ~q is false and p ^ ~q is false. For TF we have p true, q false so ~q is true and p ^ ~q is true. For FT we have p false, q true so ~q is false and p ^ ~q is false. For FF we have p false, q false so ~q is true and p ^ ~q is false. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating #$&* ********************************************* Question: `q006. Give the truth table for the proposition p U q, where U stands for disjunction. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: p U q means 'p or q' and is true whenever at least one of the statements p, q is true. Therefore p U q is true in the cases TT, TF, FT, all of which have at least one 'true', and false in the case FF. The truth table therefore reads p q p U q T T T T F T F T T F F F &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):
.............................................
Given Solution: In the case TT p is true and q is true, so ~q is false. Thus p U ~q is true, since p is true. So ~(p U ~q) is false. In the case TF p is true and q is false, so ~q is true. Thus p U ~q is true, since p is true (as is q). So ~(p U ~q) is false. In the case FT p is false and q is true, so ~q is false. Thus p U ~q is false, since neither p nor ~q is true. So ~(p U ~q) is true. In the case FF p is false and q is false, so ~q is true. Thus p U ~q is true, since ~q is true. So ~(p U ~q) is false. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok
.............................................
Given Solution: We need headings for p, q, ~q, p U ~q and ~(p U ~q). Our truth table therefore read as follows: p q ~q pU~q ~(pU~q) T T F T F T F T T F F T F F T F F T T F &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):
You should of course always attempt a solution and detail your thinking about what the problem means and how you might solve it. Even an incorrect attempt forms a basis for correction and subsequent understanding.
------------------------------------------------ Self-critique rating #$&* "