Assign_28_29

course Phy 202

Dr. Smith, Yesterday I went to Radio Shack and looked for the mulitmeter and they didn't seem to have the one i needed. The ones they had did not have high enough voltage for the experiments. Any suggestions of what I can do? I will use the tape instead of the PVC pipe.

Almost all multimeters go to much higher voltage than the experiments. It could be that the DC current readings are a little lower than specified, but they typically go to at least 150 or 200 milliamps, which would be sufficient. This is true of the most of the meters that sell for around $15 or maybe even less. You do want an analog meter, which works better than a digitial.

Your work here looks good. I've inserted a couple of notes, which will be worth looking at.

If anything is not clear let me know.

Dr. Smith, Yesterday I went to Radio Shack and looked for the mulitmeter and they didn't seem to have the one i needed. The ones they had did not have high enough voltage for the experiments. Any suggestions of what I can do? I will use the tape instead of the PVC pipe.

assignment #028 ]ĕ圯N Physics II 11-11-2005

......!!!!!!!!...................................

10:34:48 Query magnetic fields produced by electric currents. What evidence do we have that electric currents produce magnetic fields?

......!!!!!!!!...................................

RESPONSE --> you can see this when the metal ball is placed near the coil of wires and the generator is turned on to produce current in the wires the ball moved toward the coil. This means that there was an attraction thus, there was a magnetic field

.................................................

......!!!!!!!!...................................

10:35:44 STUDENT RESPONSE: We do have evidence that electric currents produce magnetic fields. This is observed in engineering when laying current carrying wires next to each other. The current carrying wires produce magnetic fields that may affect other wires or possibly metal objects that are near them. This is evident in the video experiment. When Dave placed the metal ball near the coil of wires and turned the generator to produce current in the wires the ball moved toward the coil. This means that there was an attraction toward the coil which in this case was a magnetic field. INSTRUCTOR COMMENT: Good observations. A very specific observation that should be included is that a compass placed over a conducting strip or wire initially oriented in the North-South direction will be deflected toward the East-West direction. **

......!!!!!!!!...................................

RESPONSE --> This is what i saw, and this fact is very interesting to know

.................................................

......!!!!!!!!...................................

10:35:59 How does the direction of an electric current compare with the direction of the magnetic field that results?

......!!!!!!!!...................................

RESPONSE --> In our experiment, the wire was in a coil so the magnetic field goes through the hole in the middle in only one direction.

.................................................

......!!!!!!!!...................................

10:37:15 ** GOOD STUDENT RESPONSE: The direction of the magnetic field relative to the direction of the electric current can be described using the right hand rule. This means simply using your right hand as a model you hold it so that your thumb is extended and your four fingers are flexed as if you were holding a cylinder. In this model, your thumb represents the direction of the electric current in the wire and the flexed fingers represent the direction of the magnetic field due to the current. In the case of the experiment the wire was in a coil so the magnetic field goes through the hole in the middle in one direction. **

......!!!!!!!!...................................

RESPONSE --> ok, i didn't think to use the right hand model

.................................................

......!!!!!!!!...................................

10:43:16 Query problem 17.35 What would be the area of a .20 F capacitor if plates are separated by 2.2 mm of air?

......!!!!!!!!...................................

RESPONSE --> A = Cd/Eo = (.20 F)(2.2 * 10^-3)/ (9 * 10^-12 C^2/Nm^2) =4.8 * 10^7 m^2

.................................................

......!!!!!!!!...................................

10:44:30 ** If a parallel-plate capacitor holds charge Q and the plates are separated by air, which has dielectric constant very close to 1, then the electric field between the plates is E = 4 pi k sigma = 4 pi k Q / A, obtained by applying Gauss' Law to each plate. The voltage between the plates is therefore V = E * d, where d is the separation. The capacitance is C = Q / V = Q / (4 pi k Q / A * d) = A / (4 pi k d). Solving this formula C = A / (4 pi k d) for A for the area we get A = 4 pi k d * C If capacitance is C = .20 F and the plates are separated by 2.2 mm = .0022 m we therefore have A = 4 pi k d * C = 4 pi * 9 * 10^9 N m^2 / C^2 * .20 C / V * .0022 m = 5 * 10^7 N m^2 / C^2 * C / ( J / C) * m = 5 * 10^7 N m^2 / (N m) * m = 5 * 10^7 m^2. **

......!!!!!!!!...................................

RESPONSE --> I used another equation, but the answer is close, what is the main difference in the one i used and the one used by you?

The formula you used is derived by the same reasoning used here.

The emphasis in this course is on reasoning things out from a few principles, rather than remembering a hundred different formulas. The formula you used comes in the latter category.

.................................................

......!!!!!!!!...................................

10:44:49 Query Gen Phy Problem Charge Q is placed on a parallel-plate capacitor with air between the plates; the separation of the plates is halved as a dielectric with const K inserted. By what factor does the energy stored on the capacitor change? Compare the new electric field with the old.

......!!!!!!!!...................................

RESPONSE --> IT changes by V = E * d and capacitance is Q / V, but i am stuck here

.................................................

......!!!!!!!!...................................

10:46:19 ** For a capacitor we know the following: Electric field is independent of separation, as long as we don't have some huge separation. Voltage is work / unit charge to move from one plate to the other, which is force / unit charge * distance between plates, or electric field * distance. That is, V = E * d. Capacitance is Q / V, ration of charge to voltage. Energy stored is .5 Q^2 / C, which is just the work required to move charge Q across the plates with the 'average' voltage .5 Q / C (also obtained by integrating `dW = `dQ * V = `dq * q / C from q=0 to q = Q). The dielectric increases capacitance by reducing the electric field, which thereby reduces the voltage between plates. The electric field will be 1 / k times as great, meaning 1/k times the voltage at any given separation. C will increase by factor k due to dielectric, and will also increase by factor 2 due to halving of the distance. This is because the electric field is independent of the distance between plates, so halving the distance will halve the voltage between the plates. Since C = Q / V, this halving of the denominator will double C. Thus the capacitance increases by factor 2 k, which will decrease .5 Q^2 / C, the energy stored, by factor 2 k. **

......!!!!!!!!...................................

RESPONSE --> OK so the energy stored is .5 Q^2 / C, which is just the work required to move charge Q across the plates with the 'average' voltage .5 Q / C (also obtained by integrating `dW = `dQ * V = `dq * q / C from q=0 to q = Q) and with the electric field will be 1 / k times as great, meaning 1/k times the voltage at any given separation; we will have C increase by factor k due to dielectric

.................................................

......!!!!!!!!...................................

10:47:51 Query introductory problems set 54 #'s 1-7. Explain how to obtain the magnetic field due to a given current through a small current segment, and how the position of a point with respect to the segment affects the result.

......!!!!!!!!...................................

RESPONSE --> Just as the electric field strength E = k q / r^2 of a point charge q falls off as the inverse square of distance from the source q, the magnetic field B = k' (IL) / r^2 of a short charge-and-length segment IL falls of as the inverse square of its distance from the source IL. If the orientation is such that a line from the source IL to the point is perpendicular to I, the equation B = k' (IL) / r^2 holds

.................................................

......!!!!!!!!...................................

10:47:57 ** IL is the source. The law is basically an inverse square law and the angle theta between IL and the vector r from the source to the point also has an effect so that the field is B = k ' I L / r^2 * sin(theta). **

......!!!!!!!!...................................

RESPONSE --> Exactly

.................................................

......!!!!!!!!...................................

10:48:42 Explain how to obtain the magnetic field due to a circular loop at the center of the loop.

......!!!!!!!!...................................

RESPONSE --> B = k ' I / r^2 * 2 `pi r = 2 `pi k ' I / r.

.................................................

......!!!!!!!!...................................

10:48:57 ** For current running in a circular loop: Each small increment `dL of the loop is a source I `dL. The vector from `dL to the center of the loop has magnitude r, where r is the radius of the loop, and is perpendicular to the loop so the contribution of increment * `dL to the field is k ' I `dL / r^2 sin(90 deg) = I `dL / r^2, where r is the radius of the loop. The field is either upward or downward by the right-hand rule, depending on whether the current runs counterclockwise or clockwise, respectively. The field has this direction regardless of where the increment is located. The sum of the fields from all the increments therefore has magnitude B = sum(k ' I `dL / r^2), where the summation occurs around the entire loop. I and r are constants so the sum is B = k ' I / r^2 sum(`dL). The sum of all the length increments around the loop is the circumference 2 pi r of the loop so we have B = 2 pi r k ' I / r^2 = 2 pi k ' I / r. **

......!!!!!!!!...................................

RESPONSE --> This is what i would use

.................................................

......!!!!!!!!...................................

10:49:00 query univ 24.50 (25.36 10th edition). Parallel plates 16 cm square 4.7 mm apart connected to a 12 volt battery. What is the capacitance of this capacitor?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

10:49:02 ** Fundamental principles include the fact that the electric field is very neary constant between parallel plates, the voltage is equal to field * separation, electric field from a single plate is 2 pi k sigma, the work required to displace a charge is equal to charge * ave voltage, and capacitance is charge / voltage. Using these principles we reason out the problem as follows: If the 4.7 mm separation experiences a 12 V potential difference then the electric field is E = 12 V / (4.7 mm) = 12 V / (.0047 m) = 2550 V / m, approx. Since the electric field of a plane charge distribution with density sigma is 2 pi k sigma, and since the electric field is created by two plates with equal opposite charge density, the field of the capacitor is 4 pi k sigma. So we have 4 pi k sigma = 2250 V / m and sigma = 2250 V / m / (4 pi k) = 2250 V / m / (4 pi * 9 * 10^9 N m^2 / C^2) = 2.25 * 10^-8 C / m^2. The area of the plate is .0256 m^2 so the charge on a plate is .0256 m^2 * 2.25 * 10^-8 C / m^2 = 5.76 * 10^-10 C. The capacitance is C = Q / V = 5.67 * 10^-10 C / (12 V) = 4.7 * 10^-11 C / V = 4.7 * 10^-11 Farads. The energy store in the capacitor is equal to the work required to move this charge from one plate to another, starting with an initially uncharged capacitor. The work to move a charge Q across an average potential difference Vave is Vave * Q. Since the voltage across the capacitor increases linearly with charge the average voltage is half the final voltage, so we have vAve = V / 2, with V = 12 V. So the energy is energy = vAve * Q = 12 V / 2 * (5.76 * 10^-10 C) = 3.4 * 10^-9 V / m * C. Since the unit V / m * C is the same as J / C * C = J, we see that the energy is 3.4 * 10^-9 J. Pulling the plates twice as far apart while maintaining the same voltage would cut the electric field in half (the voltage is the same but charge has to move twice as far). This would imply half the charge density, half the charge and therefore half the capacitance. Since we are moving only half the charge through the same average potential difference we use only 1/2 the energy. Note that the work to move charge `dq across the capacitor when the charge on the capacitor is `dq * V = `dq * (q / C), so to obtain the work required to charge the capacitor we integrate q / C with respect to q from q = 0 to q = Q, where Q is the final charge. The antiderivative is q^2 / ( 2 C ) so the definite integral is Q^2 / ( 2 C). This is the same result obtained using average voltage and charge, which yields V / 2 * Q = (Q / C) / 2 * Q = Q^2 / (2 C) The integration process becomes necessary for cylindrical and spherical capacitors and other capacitors which are not in a parallel-plate configuration. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

10:49:03 query univ 24.51 (25.37 10th edition). Parallel plates 16 cm square 4.7 mm apart connected to a 12 volt battery. If the battery remains connected and plates are pulled to separation 9.4 mm then what are thecapacitance, charge of each plate, electric field, energy stored?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

10:49:05 The potential difference between the plates is originally 12 volts. 12 volts over a 4.7 mm separation implies electric field = potential gradient = 12 V / (.0047 m) = 2500 J / m = 2500 N / C, approx.. The electric field is E = 4 pi k * sigma = 4 pi k * Q / A so we have Q = E * A / ( 4 pi k) = 2500 N / C * (.16 m)^2 / (4 * pi * 9 * 10^9 N m^2 / C^2) = 5.7 * 10^-7 N / C * m^2 / (N m^2 / C^2) = 5.7 * 10^-10 C, approx.. The energy stored is E = 1/2 Q V = 1/2 * 5.6 * 10^-10 C * 12 J / C = 3.36 * 10^-9 J. If the battery remains connected then if the plate separation is doubled the voltage will remain the same, while the potential gradient and hence the field will be halved. This will halve the charge on the plates, giving us half the capacitance. So we end up with a charge of about 2.8 * 10^-10 C, and a field of about 1250 N / C. The energy stored will also be halved, since V remains the same but Q is halved.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

10:49:07 query univ 24.68 (25.52 10th edition). Solid conducting sphere radius R charge Q. What is the electric-field energy density at distance r < R from the center of the sphere? What is the electric-field energy density at distance r > R from the center of the sphere?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

10:49:09 ** The idea is that we have to integrate the energy density over all space. We'll do this by finding the total energy in a thin spherical shell of radius r and thickness `dr, using this result to obtain an expression we integrate from R to infinity, noting that the field of the conducting sphere is zero for r < R. Then we can integrate to find the work required to assemble the charge on the surface of the sphere and we'll find that the two results are equal. Energy density, defined by dividing the energy .5 C V^2 required to charge a parallel-plate capacitor by the volume occupied by its electric field, is Energy density = .5 C V^2 / (volume) = .5 C V^2 / (d * A), where d is the separation of the plates and A the area of the plates. Since C = epsilon0 A / d and V = E * d this gives us .5 epsilon0 A / d * (E * d)^2 / (d * A) = .5 epsilon0 E^2 so that Energy density = .5 epsilon0 E^2, or in terms of k Energy density = 1 / (8 pi k) E^2, Since your text uses epsilon0 I'll do the same on this problem, where the epsilon0 notation makes a good deal of sense: For the charged sphere we have for r > R E = Q / (4 pi epsilon0 r^2), and therefore energy density = .5 epsilon0 E^2 = .5 epsilon0 Q^2 / (16 pi^2 epsilon0^2 r^4) = Q^2 / (32 pi^2 epsilon0 r^4). The energy density between r and r + `dr is nearly constant if `dr is small, with energy density approximately Q^2 / (32 pi^2 epsilon0 r^4). The volume of space between r and r + `dr is approximately A * `dr = 4 pi r^2 `dr. The expression for the energy lying between distance r and r + `dr is therefore approximately energy density * volume = Q^2 / (32 pi^2 epsilon0 r^4) * 4 pi r^2 `dr = Q^2 / (8 pi epsilon0 r^2) `dr. This leads to a Riemann sum over radius r; as we let `dr approach zero we approach an integral with integrand Q^2 / (8 pi epsilon0 r^2), integrated with respect to r. To get the energy between two radii we therefore integrate this expression between those two radii. If we integrate this expression from r = R to infinity we get the total energy of the field of the charged sphere. This integral gives us Q^2 / (8 pi epsilon0 R), which is the same as k Q^2 / (2 R). The work required to bring a charge `dq from infinity to a sphere containing charge q is k q / R `dq, leading to the integral of k q / R with respect to q. If we integrate from q = 0 to q = Q we get the total work required to charge the sphere. Our antiderivative is k (q^2 / 2) / r. If we evaluate this antiderivative at lower limit 0 and upper limit Q we get k Q^2 / (2 R). Since k = 1 / (4 pi epsilon0) the work is k Q^2 / (2 R) = k Q^2 / (8 pi epsilon0 R). So the energy in the field is equal to the work required to assemble the charge distribution. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

ZoJYS assignment #029 ]ĕ圯N Physics II 11-12-2005

......!!!!!!!!...................................

13:48:47 Query introductory problem set 54 #'s 8-13 Explain how to determine the magnetic flux of a uniform magnetic field through a plane loop of wire, and explain how the direction of the field and the direction of a line perpendicular to the plane of the region affect the result.

......!!!!!!!!...................................

RESPONSE --> The flux of any vector field through an area A is equal to the product of the field strength and the area, as long as the vector field is directed perpendicular to the area, which is flux = B * A

.................................................

......!!!!!!!!...................................

13:49:54 To do this we need to simply find the area of the plane loop of wire. If we are given the radius we can find the area using Pi * r ^2 Then we multiply the area of the loop (In square meters ) by the strength of the field (in tesla). This will give us the strength of the flux if the plane of the loop is perpendicular to the field. If the perpendicular to the loop is at some nonzero angle with the field, then we multiply the previous result by the cosine of the angle.

......!!!!!!!!...................................

RESPONSE --> Oh i forgot to do the Pi * r ^2 part, which would correct my area for this problem, instead of just squaring it as i put before

.................................................

......!!!!!!!!...................................

13:52:15 Explain how to determine the average rate of change of magnetic flux due to a uniform magnetic field through a plane loop of wire, as the loop is rotated in a given time interval from an orientation perpendicular to the magnetic field to an orientation parallel to the magnetic field.

......!!!!!!!!...................................

RESPONSE --> initial flux = `phi = B * A, if the loop is suddenly turned so that it is parallel to the field, the flux will become 0 (the loop doesn't intercept any of the field when it is parallel to the field; also `theta = 90 deg in this orientation and `phi = B * A * cos(`theta) = B * A * 0 = 0), the flux change = 0 - `phi = -`phi = - B * A and A flux change of -`phi in time interval `dt gives an average rate of flux change which is `d`phi / `dt = - (B * A) / `dt

.................................................

......!!!!!!!!...................................

13:53:14 ** EXPLANATION BY STUDENT: The first thing that we need to do is again use Pi * r ^ 2 to find the area of the loop. Then we multiply the area of the loop (m^2) by the strength of the field (testla) to find the flux when the loop is perpendicular to the field. Then we do the same thing for when the loop is parallel to the field, and since the cos of zero degrees is zero, the flux when the loop is parallel to the field is zero. This makes sense because at this orientation the loop will pick up none of the magnetic field. So now we have Flux 1 and Flux 2 being when the loop is perpendicular and parallel, respectively. So if we subtract Flux 2 from flux 1 and divide this value by the given time in seconds, we will have the average rate of change of magnetic flux. If we use MKS units this value will be in Tesla m^2 / sec = volts. **

......!!!!!!!!...................................

RESPONSE --> I got this problem confused with another intro problem, but i understand what is to be done in this situation

.................................................

......!!!!!!!!...................................

13:53:25 Explain how alternating current is produced by rotating a coil of wire with respect to a uniform magnetic field.

......!!!!!!!!...................................

RESPONSE --> I am not too sure about this one

.................................................

......!!!!!!!!...................................

13:54:06 ** STUDENT RESPONSE WITH INSTRUCTOR COMMENT: Y ou rotate a coil of wire end over end inside a uniform magnetic field. When the coil is parallel to the magnetic field, then there is no magnetic flux, and the current will be zero. But then when the coil is perpendicular to the field or at 90 degrees to the field then the flux will be strongest and the current will be moving in one direction. Then when the coil is parallel again at 180 degrees then the flux and the current will be zero. Then when the coil is perpendicular again at 270 degrees, then the flux will be at its strongest again but it will be in the opposite direction as when the coil was at 90 degrees. So therefore at 90 degrees the current will be moving in one direction and at 270 degrees the current will be moving with the same magnitude but in the opposite direction. COMMENT: Good. The changing magnetic flux produces voltage, which in turn produces current. **

......!!!!!!!!...................................

RESPONSE --> OK, i seem to understand this concept, it is pretty straight forward when you get down to it

.................................................

......!!!!!!!!...................................

13:54:14 Query problem of 18.39; compare power loss if 520 kW delivered at 50kV as opposed to 12 kV thru 3 ohm resistance

......!!!!!!!!...................................

RESPONSE --> I am stumped on this problem, i am not sure where to start

.................................................

......!!!!!!!!...................................

13:55:23 ** The current will not be the same at both voltages. It is important to understand that power (J / s) is the product of current (C / s) and voltage (J / C). So the current at 50 kV kW will be less than 1/4 the current at 12 kV. To deliver 520 kW = 520,000 J / s at 50 kV = 50,000 J / C requires current I = 520,000 J/s / (50,000 J/C) = 10.4 amps. This demonstrates the meaning of the formula P = I V. To deliver 520 kW = 520,000 J / s at 12 kV = 12,000 J / C requires current I = 520,000 J/s / (12,000 J/C) = 43.3 amps. The voltage drops through the 3 Ohm resistance will be calculated as the product of the current and the resistance, V = I * R: The 10.4 amp current will result in a voltage drop of 10.4 amp * 3 ohms = 31.2 volts. The 43.3 amp current will result in a voltage drop of 40.3 amp * 3 ohms = 130 volts. The power loss through the transmission wire is the product of the voltage ( J / C ) and the current (J / S) so we obtain power losses as follows: At 520 kV the power loss is 31.2 J / C * 10.4 C / s = 325 watts, approx. At 12 kV the power loss is 130 J / C * 43.3 C / s = 6500 watts, approx. Note that the power loss in the transmission wire is not equal to the power delivered by the circuit, which is lost through a number of parallel connections to individual homes, businesses, etc.. The entire analysis can be done by simple formulas but without completely understanding the meaning of voltage, current, resistance, power and their relationships it is very easy to get the wrong quantities in the wrong places, and especially to confuse the power delivered with the power loss. The analysis boils down to this: I = P / V, where P is the power delivered Ploss = I^2 R, where R is the resistance of the circuit and Ploss is the power loss of the circuit. So Ploss = I^2 * R = (P/V)^2 * R = P^2 * R / V^2. This shows that power loss across a fixed resistance is inversely proportional to square of the voltage. So that the final voltage, which is less than 1/4 the original voltage, implies more than 16 times the power loss. A quicker solution through proportionalities: For any given resistance power loss is proportional to the square of the current. For given power delivery current is inversely proportional to voltage. So power loss is proportional to the inverse square of the voltage. In this case the voltage ratio is 50 kV / (12 kV) = 4.17 approx., so the ratio of power losses is about 1 / 4.17^2 = 1 / 16.5 = .06. Note that this is the same approximate ratio you would get if you divided your 324.5 watts by 5624.7 watts. **

......!!!!!!!!...................................

RESPONSE --> This was a hard problem, I had trouble with I = P / V, where P is the power delivered Ploss = I^2 R, where R is the resistance of the circuit and Ploss is the power loss of the circuit. So Ploss = I^2 * R = (P/V)^2 * R = P^2 * R / V^2. I found that rather confusing at first to get down

You can solve this problem if you understand the concepts of power (work/unit of time), current (charge / unit of time), voltage (work / unit of charge) and resistance (ohm's law).

The two basic principles here are that

1. Power (J/s) is equal to current (C/s) times voltage (J / C). 2. Current (C / s) is voltage divided by resistance.

Be sure you understand how these basic concepts can be built into a solution of this problem.

.................................................

......!!!!!!!!...................................

13:55:27 Query univ 25.62 (26.50 10th edition) rectangular block d x 2d x 3d, potential difference V. To which faces should the voltage be applied to attain maximum current density and what is the density?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

13:55:29 ** First note that the current I is different for diferent faces. The resistance of the block is proportional to the distance between faces and inversely proportional to the area, so current is proportional to the area and inversely proportional to the distance between faces. Current density is proportional to current and inversely proportional to the area of the face, so current density is proportional to area and inversely proportional to the distance between faces and to area, leaving current inversely proportional to distance between faces. For the faces measuring d x 2d we have resistance R = rho * L / A = rho * (3d) / (2 d^2) = 3 / 2 rho / d so current is I = V / R = V / (3/2 rho / d) = 2d V / (3 rho). Current density is I / A = (2 d V / (3 rho) ) / (2 d^2) = V / (3 rho d) = 1/3 V / (rho d). For the faces measuring d x 3d we have resistance R = rho * L / A = rho * (2d) / (3 d^2) = 2 / 3 rho / d so current is I = V / R = V / (2/3 rho / d) = 3 d V / (2 rho). Current density is I / A = (3 d V / (2 rho) ) / (3 d^2) = V / (2 rho d) = 1/2 V / (rho d). For the faces measuring 3d x 2d we have resistance R = rho * L / A = rho * (d) / (6 d^2) = 1 / 6 rho / d so current is I = V / R = V / (1/6 rho / d) = 6 d V / (rho). Current density is I / A = (6 d V / (rho) ) / (6 d^2) = V / (rho d) = V / (rho d). Max current density therefore occurs when the voltage is applied to the largest face. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

13:55:31

......!!!!!!!!...................................

RESPONSE -->

.................................................

"

Assign_28_29