#$&* course MTH 279 Question: `q001. Find the first and second derivatives of the following functions:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I did not understand the form of the 3rd question, I have in fact not seen this denotion before, so I took it to be that t was the assigned variable of which to take derivation. ------------------------------------------------ Self-critique rating: ********************************************* Question: `q002. Sketch a graph of the function y = 3 sin(4 t + 2). Don't use a graphing calculator, use what you know about graphing. Make your best attempt, and describe both your thinking and your graph. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This is a sinusoidal graph with a magnitude of 3, its intercepts are moved back 2 units on the x axis and the frequency of the wavelength takes Ό the time.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I dont know all the correct word usage all the time. ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. Describe, in terms of A, omega and theta_0, the characteristics of the graph of y = A cos(omega * t + theta_0) + k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The graph is a cosinusoidal wave with an magnitude A values larger, placed negative theta units on the x axis and the frequency (length of wavelength) is 1/omega units
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q004. Find the indefinite integral of each of the following: f(t) = e^(-3 t) x(t) = 2 sin( 4 pi t + pi/4) y(t) = 1 / (3 x + 2) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1. D = e^u * du, thus integral e^u / du -1/3 (e^(-3t)) + C 2. D = cos (u) *du thus Integral = -cos (u) / du - ½ pi (cos (4pi (t) + pi/4)) + C 3. Using u substitution u = 3t +2 du = 3 integral of du/u = ln (u) 1/3 ( ln (3t+2)) + C
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q005. Find an antiderivative of each of the following, subject to the given conditions: f(t) = e^(-3 t), subject to the condition that when t = 0 the value of the antiderivative is 2. x(t) = 2 sin( 4 pi t + pi/4), subject to the condition that when t = 1/8 the value of the antiderivative is 2 pi. y(t) = 1 / (3 t + 2), subject to the condition that the limiting value of the antiderivative, as t approaches infinity, is -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1. -1/3 (e^(-3t)) + C t = 0 : -1/3 (e^(-3(0))) + C = 2 C = 7/3 -1/3 (e^(-3t)) + (7/3) 2. - ½ pi (cos (4pi (t) + pi/4)) + C t = 1/8 : - ½ pi (cos (4pi (1/8) + pi/4)) + C = 2 pi 4 C = 8 pi - (sqrt (2)*pi) C = (8 pi - (sqrt (2)*pi)) / 4 - ½ pi (cos (4pi (1/8) + pi/4)) + (8 pi - (sqrt (2)*pi)) / 4 3. 1/3 ( ln (3t+2)) + C limit as t approaches infinity: 1/3 ( ln (3(infinity)+2)) + C = -1 1/3 (ln (3(infinity)+2)) + C = -1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I did not understand the 3rd question I believe, I am not sure how to find the constant when the limit is truly approaching infinity. ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q007. The graph of a function f(x) contains the point (2, 5). So the value of f(2) is 5. At the point (2, 5) the slope of the tangent line to the graph is .5. What is your best estimate, based on only this information, of the value of f(2.4)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Y - Intercept = (0,4) Y = .5x+4 Y(2) = 5 So y(2.4) = 2.4 (.5) +4 = 1.2+4 = 5.2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q008. The graph of a function g(t) contains the points (3, 4), (3.2, 4.4) and (3.4, 4.5). What is your best estimate of the value of g ' (3), where the ' represents the derivative with respect to t? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The function seems to be a square root function, thus the derivative, the function goes from negative infinity increases at an increasing rate as approaches x=0, where it would be undefined.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!