query 13

#$&*

course Mth 272

7/7 2:11pm

013. `query 13

*********************************************

Question: `q5.7.4 (was 5.7.4 vol of solid of rev abt x axis, y = `sqrt(4-x^2)

What is the volume of the solid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If the curve is revolved about the x axis the radius of the circle at position x will be the y value radius = `sqrt(4 - x^2).

The cross-section at that position will therefore be pi * radius^2 = pi ( sqrt(4 - x^2) ) ^ 2 = pi ( 4 - x^2).

The volume of a 'slice' of thickeness `dx will therefore be approximately pi ( 4 - x^2 ) * `dx, which leads us to the integral int(pi ( 4 - x^2) dx, x from 0 to 2).

An antiderivative of 4 - x^2 = 4 x - x^3 / 3. Between x = 0 and x = 2 the value of this antiderivative changes by 4 * 2 - 2^3 / 3 = 16 / 3, which is the integral of 4 - x^2 from x = 0 to x = 2. Multiplying by pi to get the desired volume integral we obtain

volume = pi ( 16/3) = 16 pi / 3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a*& If the curve is revolved about the x axis the radius of the circle at position x will be the y value radius = `sqrt(4 - x^2).

The cross-section at that position will therefore be pi * radius^2 = pi ( sqrt(4 - x^2) ) ^ 2 = pi ( 4 - x^2).

The volume of a 'slice' of thickeness `dx will therefore be approximately pi ( 4 - x^2 ) * `dx, which leads us to the integral int(pi ( 4 - x^2) dx, x from 0 to 2).

An antiderivative of 4 - x^2 = 4 x - x^3 / 3. Between x = 0 and x = 2 the value of this antiderivative changes by 4 * 2 - 2^3 / 3 = 16 / 3, which is the integral of 4 - x^2 from x = 0 to x = 2. Multiplying by pi to get the desired volume integral we obtain

volume = pi ( 16/3) = 16 pi / 3. *&*& DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q5.7.16 (was 5.7.16) vol of solid of rev abt x axis region bounded by y = x^2, y = x - x^2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = x^2 and y = x - x^2 intersect where x^2 = x - x^2, i.e., where 2x^2 - x = 0 or x(2x-1) = 0.

This occurs when x = 0 and when x = 1/2.

So the region runs from x=0 to x = 1/2.

Over this region y = x^2 is less than y = x - x^2. When the region is revolved about the x ais we will get an outer circle of radius x - x^2 and an inner circle of radius x^2. The area between the inner and outer circle is `pi (x-x^2)^2 - `pi(x^2)^2 or `pi ( (x-x^2)^2 - x^2). We integrate this expression from x = 0 to x = 1/2.

The result is -`pi/40

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a y = x^2 and y = x - x^2 intersect where x^2 = x - x^2, i.e., where 2x^2 - x = 0 or x(2x-1) = 0.

This occurs when x = 0 and when x = 1/2.

So the region runs from x=0 to x = 1/2.

Over this region y = x^2 is less than y = x - x^2. When the region is revolved about the x ais we will get an outer circle of radius x - x^2 and an inner circle of radius x^2. The area between the inner and outer circle is `pi (x-x^2)^2 - `pi(x^2)^2 or `pi ( (x-x^2)^2 - x^2). We integrate this expression from x = 0 to x = 1/2.

The result is -`pi/40. ** DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q5.7.18 (was 5.7.18) vol of solid of rev abt y axis y = `sqrt(16-x^2), y = 0, 0

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

At x = 0 we have y = 4, and at x = 4 we have y = 0. So the y limits on the integral run from 0 to 4.

At a given y value we have

y = sqrt(16 - x^2) so that

y^2 = 16 - x^2 and

x = sqrt(16 - y^2).

At a given y the solid will extend from x = 0 to x = sqrt(16 - y^2), so the radius of the solid will be sqrt(16 - y^2).

So we integrate pi x^2 = pi ( sqrt(16 - y^2) ) ^2 = pi ( 16 - y^2) from y = 0 to y = 4.

An antiderivative of pi ( 16 - y^2) with respect to y is pi ( 16 y - y^3 / 3).

We get

int( pi ( 16 - y^2), y, 0, 4) = pi ( 16 * 4 - 4^3 / 3) - pi ( 16 * 0 - 0^3 / 3) = 128 pi / 3.

This is the volume of the solid of revolution.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a At x = 0 we have y = 4, and at x = 4 we have y = 0. So the y limits on the integral run from 0 to 4.

At a given y value we have

y = sqrt(16 - x^2) so that

y^2 = 16 - x^2 and

x = sqrt(16 - y^2).

At a given y the solid will extend from x = 0 to x = sqrt(16 - y^2), so the radius of the solid will be sqrt(16 - y^2).

So we integrate pi x^2 = pi ( sqrt(16 - y^2) ) ^2 = pi ( 16 - y^2) from y = 0 to y = 4.

An antiderivative of pi ( 16 - y^2) with respect to y is pi ( 16 y - y^3 / 3).

We get

int( pi ( 16 - y^2), y, 0, 4) = pi ( 16 * 4 - 4^3 / 3) - pi ( 16 * 0 - 0^3 / 3) = 128 pi / 3.

This is the volume of the solid of revolution. ** DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q5.7.31 (was 5.7.30) fuel take solid of rev abt x axis y = 1/8 x^2 `sqrt(2-x)

What is the volume of the solid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The radius of the solid at position x is 1/8 x^2 sqrt(2-x) so the cross-sectional area at that point is

c.s. area = pi * (1/8 x^2 sqrt(2-x) )^2 = pi/64 * x^4(2-x) = pi/64 * ( 2 x^4 - x^5).

The volume is therefore

vol = int(pi/64 * ( 2 x^4 - x^5), x, 0, 2).

An antiderivative of 2 x^4 - x^5 is 2 x^5 / 5 - x^6 / 6 so the integral is

pi/64 * [ 2 * 2^5 / 5 - 2^6 / 6 - ( 2 * 0^5 / 5 - 0^6 / 6) ] = pi / 64 * ( 64 / 30) = pi/30

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The radius of the solid at position x is 1/8 x^2 sqrt(2-x) so the cross-sectional area at that point is

c.s. area = pi * (1/8 x^2 sqrt(2-x) )^2 = pi/64 * x^4(2-x) = pi/64 * ( 2 x^4 - x^5).

The volume is therefore

vol = int(pi/64 * ( 2 x^4 - x^5), x, 0, 2).

An antiderivative of 2 x^4 - x^5 is 2 x^5 / 5 - x^6 / 6 so the integral is

pi/64 * [ 2 * 2^5 / 5 - 2^6 / 6 - ( 2 * 0^5 / 5 - 0^6 / 6) ] = pi / 64 * ( 64 / 30) = pi/30. ** DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. Let me know if you have any questions. &#