query 19

#$&*

course Mth 272

8/8 12:01am

019.

*********************************************

Question: `qQuery problem 6.4.16 use table to integrate x^2 ( ln(x^3) )^2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Let u = x^3 so du = 3x^2 dx. The x^2 dx in the integral is just 1/3 du.

You therefore have the integral of 1/3 ( ln(u) )^2 du.

The table should have something for ( ln(u) ) ^ n.

In any case the integral of ln(u)^2 with respect to u is u ln(u)^2 - 2 u ln(u) + 2 u.

With the substitution u = x^3 you would be integrating (ln u)^2 * du/3, which would give you

u [ 2 - 2 ln u + (ln u)^2 ] / 3, which translates to

x^3 ( 2 - 2 ln(x^3) + (ln(x^3) ) ^ 2 ) / 3.

DER: int( (ln(u)^2) = u·LN(u)^2 - 2·u·LN(u) + 2·u. Then for increasing powers of n int( ln(u)^n) gives us:

u·LN(u)^3 - 3·u·LN(u)^2 + 6·u·LN(u) - 6·u then

u·LN(u)^4 - 4·u·LN(u)^3 + 12·u·LN(u)^2 - 24·u·LN(u) + 24·u and

u·LN(u)^5 - 5·u·LN(u)^4 + 20·u·LN(u)^3 - 60·u·LN(u)^2 + 120·u·LN(u) - 120·

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Let u = x^3 so du = 3x^2 dx. The x^2 dx in the integral is just 1/3 du.

You therefore have the integral of 1/3 ( ln(u) )^2 du.

The table should have something for ( ln(u) ) ^ n.

In any case the integral of ln(u)^2 with respect to u is u ln(u)^2 - 2 u ln(u) + 2 u.

With the substitution u = x^3 you would be integrating (ln u)^2 * du/3, which would give you

u [ 2 - 2 ln u + (ln u)^2 ] / 3, which translates to

x^3 ( 2 - 2 ln(x^3) + (ln(x^3) ) ^ 2 ) / 3.

DER: int( (ln(u)^2) = u·LN(u)^2 - 2·u·LN(u) + 2·u. Then for increasing powers of n int( ln(u)^n) gives us:

u·LN(u)^3 - 3·u·LN(u)^2 + 6·u·LN(u) - 6·u then

u·LN(u)^4 - 4·u·LN(u)^3 + 12·u·LN(u)^2 - 24·u·LN(u) + 24·u and

u·LN(u)^5 - 5·u·LN(u)^4 + 20·u·LN(u)^3 - 60·u·LN(u)^2 + 120·u·LN(u) - 120·

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery problem 6.3.52 (7th edition 6.4.46) use table to integrate x ^ 4 ln(x) then check by integration by parts

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Integration by parts on x^n ln(x) works with the substitution

u = ln(x) and dv = x^n dx, so that

du/dx = 1/x and v = x^(n+1) / n, giving us

du = dx / x and v = x^(n+1) / (n + 1).

Thus our integral is

u v - int( v du) =

ln(x) * x^(n+1) / (n + 1) - int ( x^(n+1)/(n+1) * dx / x) =

ln(x) * x^(n+1)/( n + 1) - int(x^n dx) / (n+1) =

ln(x) * x^(n+1) / (n + 1) - x^(n+1) / (n+1)^2 =

x^(n+1) / (n+1) ( ln(x) - 1(n+1)).

This should be equivalent to the formula given in the text.

For n = 4 we get

x^(4 + 1) / (4 + 1) ( ln(x) - 1 / (4 + 1)) =

x^5 / 5 (ln(x) - 1/5). *&*&

(x^5/25)(4 ln x) + C

Using integration by parts:

(x^5/5) ln x - (x^5/25)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Integration by parts on x^n ln(x) works with the substitution

u = ln(x) and dv = x^n dx, so that

du/dx = 1/x and v = x^(n+1) / n, giving us

du = dx / x and v = x^(n+1) / (n + 1).

Thus our integral is

u v - int( v du) =

ln(x) * x^(n+1) / (n + 1) - int ( x^(n+1)/(n+1) * dx / x) =

ln(x) * x^(n+1)/( n + 1) - int(x^n dx) / (n+1) =

ln(x) * x^(n+1) / (n + 1) - x^(n+1) / (n+1)^2 =

x^(n+1) / (n+1) ( ln(x) - 1(n+1)).

This should be equivalent to the formula given in the text.

For n = 4 we get

x^(4 + 1) / (4 + 1) ( ln(x) - 1 / (4 + 1)) =

x^5 / 5 (ln(x) - 1/5). *&*&

(x^5/25)(4 ln x) + C

Using integration by parts:

(x^5/5) ln x - (x^5/25)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery problem 6.4.63 profit function P = `sqrt( 375.6 t^2 - 715.86) on [8,16].

( 8th edition problem is 6.2.61 and the function is sqrt(.000645 t^2 + .1673) on (2, 5) )

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To get the average net profit integrate the profit function over the given interval and divide by the length of the interval.

The integrand is sqrt(375.6 t^2 - 715.86), which is of the form `sqrt( u^2 +- a^2).

By the table the integral is

1/2 u sqrt(u^2 +- a^2) -+ a^2 ln(u + sqrt(u^2 +- a^2)) + c.

u^2 = 375.67 t^2 so u = `sqrt(375.67) * t = 19.382 t approx.

Similarly a = `sqrt(715.86) = 26.755 approx..

Substituting our values of a and u we find that integral(sqrt(375.6 t^2 - 715.86), t from 8 to 16) will be about 1850. Dividing this by the length 8 of the interval gives us the average value, which is about 1850 / 8 = 230.

** THE FUNCTION IS CLOSE TO THE LINEAR FUNCTION 19.4 t. The 715.86 doesn't have much effect when t is 8 or greater so the function is fairly close to P = 19 t. This approximation is linear so its average value will occur at the midpoint t = 12 of the interval. At t = 12 we have P = 19 * 12 = 230, approx.

8TH EDITION INTEGRAL

The function given in the 8th edition leads to the integral

int( sqrt(.000645 t^2 + .1673) dt, t from 2 to 5), which is of the form `sqrt( u^2 +- a^2).

u^2 = .000645 t^2 so u = `sqrt(.000645) * t = .08 t approx.

Similarly a = `sqrt(.1673) = .41 approx..

By the table the integral is

1/2 u sqrt(u^2 +- a^2) -+ a^2 ln(u + sqrt(u^2 +- a^2)) + c.

u^2 = 375.67 t^2 so u = `sqrt(375.67) * t = 19.382 t approx.

Similarly a = `sqrt(715.86) = 26.755 approx..

Substituting our values of a and u we find that

integral(sqrt(.000645 t^2 + .1673), t from 2 to 5) will be about 1850. Dividing this by the length 8 of the interval gives us the average value, which is about 1850 / 8 = 230.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a To get the average net profit integrate the profit function over the given interval and divide by the length of the interval.

The integrand is sqrt(375.6 t^2 - 715.86), which is of the form `sqrt( u^2 +- a^2).

By the table the integral is

1/2 u sqrt(u^2 +- a^2) -+ a^2 ln(u + sqrt(u^2 +- a^2)) + c.

u^2 = 375.67 t^2 so u = `sqrt(375.67) * t = 19.382 t approx.

Similarly a = `sqrt(715.86) = 26.755 approx..

Substituting our values of a and u we find that integral(sqrt(375.6 t^2 - 715.86), t from 8 to 16) will be about 1850. Dividing this by the length 8 of the interval gives us the average value, which is about 1850 / 8 = 230.

** THE FUNCTION IS CLOSE TO THE LINEAR FUNCTION 19.4 t. The 715.86 doesn't have much effect when t is 8 or greater so the function is fairly close to P = 19 t. This approximation is linear so its average value will occur at the midpoint t = 12 of the interval. At t = 12 we have P = 19 * 12 = 230, approx.

8TH EDITION INTEGRAL

The function given in the 8th edition leads to the integral

int( sqrt(.000645 t^2 + .1673) dt, t from 2 to 5), which is of the form `sqrt( u^2 +- a^2).

u^2 = .000645 t^2 so u = `sqrt(.000645) * t = .08 t approx.

Similarly a = `sqrt(.1673) = .41 approx..

By the table the integral is

1/2 u sqrt(u^2 +- a^2) -+ a^2 ln(u + sqrt(u^2 +- a^2)) + c.

u^2 = 375.67 t^2 so u = `sqrt(375.67) * t = 19.382 t approx.

Similarly a = `sqrt(715.86) = 26.755 approx..

Substituting our values of a and u we find that

integral(sqrt(.000645 t^2 + .1673), t from 2 to 5) will be about 1850. Dividing this by the length 8 of the interval gives us the average value, which is about 1850 / 8 = 230.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment."

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment."

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. Let me know if you have any questions. &#