course Phy 202
.................................................???????·?????D???Iy
......!!!!!!!!...................................
17:02:18 query experiment to be viewed and read but not performed: transverse and longitudinal waves in aluminum rod what is the evidence that the higher-pitched waves are longitudinal while the lower-pitched waves are transverse?
......!!!!!!!!...................................
RESPONSE --> the higher pitched waves were stopped much quicker and were therefore interacting with the pipe more (longitudinal)
.................................................
......!!!!!!!!...................................
17:02:42 STUDENT RESPONSE: The logitudinal waves had a higher velocity. That doesn't provide evidence that the high-pitched wave was longitudinal, since we didn't directly measure the velocity of those waves. The higher-pitches waves were damped out much more rapidly by touching the very end of the rod, along its central axis, than by touching the rod at the end but on the side. The frequency with which pulses arrive at the ear determines the pitch. The amplitude of the wave affects its intensity, or energy per unit area. For a given pitch the energy falling per unit area is proportional to the square of the amplitude. Intensity is also proportional to the square of the frequency. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:04:30 Query General College Physics and Principles of Physics 12.08: Compare the intensity of sound at 120 dB with that of a whisper at 20 dB.
......!!!!!!!!...................................
RESPONSE --> Intensity=(Io)(10^beta/10) I120=(1x10^-12 W/m^2)(10^12)=1W/m^2 I20=(1x10^-12 W/m^2)(10^2)=1x10^-9 W/m^2
.................................................
......!!!!!!!!...................................
17:06:00 The intensity at 120 dB is found by solving the equation dB = 10 log(I / I_threshold) for I. We get log(I / I_threshold) = dB / 10, so that I / I_threshold = 10^(120 / 10) = 12and I = I_threshold * 10^12. Since I_threshold = 10^-12 watts / m^2, we have for dB = 120: I = 10^-12 watts / m^2 * 10^12 = 1 watt / m^2. The same process tells us that for dB = 20 watts, I = I_threshold * 10^(20 / 10) = 10^-12 watts / m^2 * 10^2 = 10^-10 watts / m^2. Dividing 1 watt / m^2 by 10^-10 watts / m^2, we find that the 120 dB sound is 10^10 times as intense, or 10 billion times as intense. A more elegant solution uses the fact that dB_1 - dB_2 = 10 log(I_1 / I_threshold) - ( 10 log(I_2 / I_threshold) ) = 10 log(I_1 / I_threshold) - ( 10 log(I_2 / I_threshold) ) = 10 {log(I_1) - log( I_threshold) - [ ( log(I_2) - log(I_threshold) ]} = 10 { log(I_1) - log(I_2)} = 10 log(I_1 / I_2). So we have 120 - 20 = 100 = 10 log(I_1 / I_2) and log(I_1 / I_2) = 100 / 10 = 10 so that I_1 / I_2 = 10^10.
......!!!!!!!!...................................
RESPONSE --> ok. your answer has 10x10^-10 which is the same as 1x10^-9. ok. 10 billion times as intense of sound
.................................................
......!!!!!!!!...................................
17:06:57 Query gen phy 12.30 length of open pipe, 262 Hz at 21 C? **** gen phy What is the length of the pipe?
......!!!!!!!!...................................
RESPONSE --> (343m/s + 0.6m/s)/4(L)=262 cycles/second, therefore L=0.3275m
.................................................
......!!!!!!!!...................................
17:07:08 GOOD STUDENT SOLUTION First we must determine the velocity of the sound waves given the air temperature. We do this using this formula v = (331 + 0.60 * Temp.) m/s So v = (331 + 0.60 * 21) m/s v = 343.6 m/s The wavelength of the sound is wavelength = v / f = 343.6 m/s / (262 Hz) = 0.33 meters. So 262 Hz = 343.6 m/s / 4 * Length Length = 0.33 meters f = v / (wavelength) 262 Hz = [343 m/s] / (wavelength) wavelength = 1.3 m. So the wavelength is 1.3 m. If it's an open pipe then there are antinodes at the ends and the wavelength is 2 times the length, so length of the the pipe is about 1.3 m / 2 = .64 m, approx.. Had the pipe been closed at one end then there would be a node and one end and an antinode at the other and the wavelength of the fundamental would have therefore been 4 times the length; the length of the pipe would then have been 1.3 m / 4 = .32 m. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:07:11 **** Univ phy 16.72 (10th edition 21.32):? Crab nebula 1054 A.D.;, H gas, 4.568 * 10^14 Hz in lab, 4.586 from Crab streamers coming toward Earth.? Velocity?? Assuming const vel diameter? ?? Ang diameter 5 arc minutes; how far is it?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:07:14 ** Since fR = fS ( 1 - v/c) we have v = (fR / fS - 1) * c = 3 * 10^8 m/s * (4.586 * 10^14 Hz) / (4.568 * 10^14 Hz) = 1.182 * 10^6 m/s, approx. In the 949 years since the explosion the radius of the nebula would therefore be about 949 years * 365 days / year * 24 hours / day * 3600 seconds / hour * 1.182 * 10^6 m/s = 3.5 * 10^16 meters, the diameter about 7 * 10^16 meters. 5 minutes of arc is 5/60 degrees or 5/60 * pi/180 radians = 1.4 * 10^-3 radians. The diameter is equal to the product of the distance and this angle so the distance is distance = diameter / angle = 7 * 10^16 m / (1.4 * 10^-3) = 2.4 * 10^19 m. Dividing by the distance light travels in a year we get the distance in light years, about 6500 light years. CHECK AGAINST INSTRUCTOR SOLUTION: ** There are about 10^5 seconds in a day, about 3 * 10^7 seconds in a year and about 3 * 10^10 seconds in 1000 years. It's been about 1000 years. So those streamers have had time to move about 1.177 * 10^6 m/s * 3 * 10^10 sec = 3 * 10^16 meters. That would be the distance of the closest streamers from the center of the nebula. The other side of the nebula would be an equal distance on the other side of the center. So the diameter would be about 6 * 10^16 meters. A light year is about 300,000 km/sec * 3 * 10^7 sec/year = 9 * 10^12 km = 9 * 10^15 meters. So the nebula is about 3 * 10^16 meters / (9 * 10^15 m / light yr) = 3 light years in diameter, approx. 5 seconds of arc is 5/60 of a degree or 5 / (60 * 360) = 1 / 4300 of the circumference of a full circle, approx. If 1/4300 of the circumference is 6 * 10^16 meters then the circumference is about 4300 times this distance or about 2.6 * 10^20 meters. The circumference is 1 / (2 pi) times the radius. We're at the center of this circle since it is from here than the angular diameter is observed, so the distance is about 1 / (2 pi) * 2.6 * 10^20 meters = 4 * 10^19 meters. This is about 4 * 10^19 meters / (9 * 10^15 meters / light year) = 4400 light years distant. Check my arithmetic. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:07:17 **** query univ phy 16.66 (21.26 10th edition). 200 mHz refl from fetal heart wall moving toward sound; refl sound mixed with transmitted sound, 85 beats / sec. Speed of sound 1500 m/s. What is the speed of the fetal heart at the instant the measurement is made?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:07:20 . ** 200 MHz is 200 * 10^6 Hz = 2 * 10^8 Hz or 200,000,000 Hz. The frequency of the wave reflected from the heart will be greater, according to the Doppler shift. The number of beats is equal to the difference in the frequencies of the two sounds. So the frequency of the reflected sound is 200,000,085 Hz. The frequency of the sound as experienced by the heart (which is in effect a moving 'listener') is fL = (1 + vL / v) * fs = (1 + vHeart / v) * 2.00 MHz, where v is 1500 m/s. This sound is then 'bounced back', with the heart now in the role of the source emitting sounds at frequency fs = (1 + vHeart / v) * 2.00 MHz, the 'old' fL. The 'new' fL is fL = v / (v - vs) * fs = v / (v - vHeart) * (1 + vHeart / v) * 2.00 MHz. This fL is the 200,000,085 Hz frequency. So we have 200,000,085 Hz = 1500 m/s / (v - vHeart) * (1 + vHeart / v) * 2.00 MHz and v / (v - vHeart) * (1 + vHeart / v) = 200,000,085 Hz / (200,000,000 Hz) = 1.000000475. A slight rearrangement gives us (v + vHeart) / (v - vHeart) = 1.000000475 so that v + vHeart = 1.000000475 v - 1.000000475 vHeart and 2.000000475 vHeart = .000000475 v, with solution vHeart = .000000475 v / (2.000000475), very close to vHeart = .000000475 v / 2 = .000000475 * 1500 m/s / 2 = .00032 m/s, about .3 millimeters / sec. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
??\z????a?r··???]? assignment #025 025. `Query 14 Physics II 11-21-2007
......!!!!!!!!...................................
17:07:53 Query Principles of Physics and General College Physics 12.40: Beat frequency at 262 and 277 Hz; beat frequency two octaves lower.
......!!!!!!!!...................................
RESPONSE --> 277Hz-262Hz=15 Hz difference. each octave reduces this by half, so two octaves reduce by 1/4. 15Hz/4= 3.75 Hz
.................................................
......!!!!!!!!...................................
17:08:47 The beat frequency is the difference in the frequencies, in this case 277 Hz - 262 Hz = 15 Hz. One ocatave reduces frequency by half, so two octaves lower would give frequencies 1/4 as great. The difference in the frequencies would therefore also be 1/4 as great, resulting in a beat frequency of 1/4 * 15 Hz = 3.75 Hz.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:09:56 Query gen phy problem 12.46 speakers 1.8 meters apart, listener three meters from one and 3.5 m from the other **** gen phy what is the lowest frequency that will permit destructive interference at the location of the listener?
......!!!!!!!!...................................
RESPONSE --> 3.5m-3.0m=.5m... .5=`lambda/2 `lambda=1meter=340 m/s / frequency frequency= 340 Hz
.................................................
......!!!!!!!!...................................
17:12:02 STUDENT SOLUTION: To solve this problem, I first realize that for destructive interference to occur, the path difference is an odd multiple of half of the wavelength(ex. 1/2, 3/2, 5/2). I used Fig.12-17 in the text to help visualize this problem. Part (A) of the problem asks to calculate the lowest frequency at which destructive interference will occur at the point where two loudspeakers are 2.5m apart and one person stands 3.0m from one speaker and 3.5m from the other. The text states that 'destructive interference occurs at any point whose distance from one speaker is greater than its distance from the other speaker by exactly one-half wavelength.' The path difference in the problem is fixed, therefore the lowest frequency at which destructive interference will occur is directly related to the longest wavelength. To calculate the lowest frequency, I first have to calculate the longest wavelength using the equation 'dL ='lambda/2, where `dL is the path difference. 'lambda=2*'dL =2(3.5m-3.0m)=1m Now I can calculate the frequency using f=v/'lambda. The velocity is 343m/s which is the speed of sound. f=343m/s/1m=343 Hz. Thus, the lowest frequency at which destructive interference can occur is at 343Hz. Keeping in mind that destructive interference occurs if the distance equals an odd multiple of the wavelength, I can calculate (B) part of the problem. To determine the next wavelength, I use the equation 'dL=3'lambda/2 wavelength=2/3(3.5m-3.0m) =0.33m Now I calculate the next highest frequency using the equation f=v/wavelength. f^2=343m/s/0.33m=1030Hz. I finally calculate the next highest frequency. 'del L=5/2 'lambda wavelength=0.20m f^3=343m/s/0.2m=1715 Hz. INSTRUCTOR EXPLANATION: The listener is .5 meters further from one speaker than from the other. If this .5 meter difference results in a half-wavelength lag in the sound from the further speaker, the peaks from the first speaker will meet the troughs from the second. If a half-wavelength corresponds to .5 meters, then the wavelength must be 1 meter. The frequency of a sound with a 1-meter wavelength moving at 343 m/s will be 343 cycles/sec, or 343 Hz. The next two wavelengths that would result in destructive interference would have 1.5 and 2.5 wavelengths corresponding to the .5 m path difference. The wavelengths would therefore be .5 m / (1.5) = .33 m and .5 m / (2.5) = .2 m, with corresponding frequencies 343 m/s / (.33 m) = 1030 Hz and 343 m/s / (.2 m) = 1720 Hz, approx. ****
......!!!!!!!!...................................
RESPONSE --> ok. the next two wavelengths are found using: wavelength = 2/3 (.5m)=.33m frequency= 343 m/s .33 m = 1030Hz wavelength = .2m 343m/s / .2m= 1715 Hz
.................................................
......!!!!!!!!...................................
17:12:46 **** gen phy why is there no highest frequency that will permit destructive interference?
......!!!!!!!!...................................
RESPONSE --> frequency increase is infinite. there is no highest frequency, so there is no highest interaction between two frequencies.
.................................................
......!!!!!!!!...................................
17:12:57 ** You can get any number of half-wavelengths into that .5 meter path difference. **
......!!!!!!!!...................................
RESPONSE --> oh. that works too.
.................................................
......!!!!!!!!...................................
17:13:18 gen phy what must happen in order for the sounds from the two speakers to interfere destructively, assuming that the sources are in phase?
......!!!!!!!!...................................
RESPONSE --> the valleys and peaks must coordinate rather than the two peaks
.................................................
......!!!!!!!!...................................
17:13:24 ** The path difference has to be and integer number of wavelengths plus a half wavelength. **
......!!!!!!!!...................................
RESPONSE --> ok.
.................................................
......!!!!!!!!...................................
17:13:27 CRAB NEBULA PROBLEM?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:13:30 This Query will exit.
......!!!!!!!!...................................
RESPONSE -->
.................................................