course Phy 202 On query asst 30, after the problems included, the program quit due to a runtime error
......!!!!!!!!...................................
11:13:38 General College Physics and Principles of Physics Problem 24.2: The third-order fringe of 610 nm light created by two narrow slits is observed at 18 deg. How far apart are the slits?
......!!!!!!!!...................................
RESPONSE --> 3(610nm)=1830nm difference. (slit spacing)(sin(18))=1830nm (slit spacing)=1830nm/sin(18)=5920nm=5.92x10^6 m
.................................................
......!!!!!!!!...................................
11:14:03 The path difference for a 3d-order fringe is 3 wavelengths, so light from one slit travels 3 * 610 nm = 1830 nm further. The additional distance is equal to slit spacing * sin(18 deg), so using a for slit spacing we have a sin(18 deg) = 1830 nm. The slit spacing is therefore a = 1830 nm / sin(18 deg) = 5920 nm, or 5.92 * 10^-6 meters.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
11:14:29 **** query gen phy problem 24.7 460 nm light gives 2d-order max on screen; what wavelength would give a minimum?
......!!!!!!!!...................................
RESPONSE --> 2(460nm)=920nm max. to find the minimum you multiply by 3/2: 3/2 (920)=613nm.
.................................................
......!!!!!!!!...................................
11:16:49 STUDENT SOLUTION FOLLOWED BY INSTRUCTOR COMMENT AND SOLUTION: The problem states that in a double-slit experiment, it is found that bule light of wavelength 460 nm gives a second-order maximun at a certain location on the screen. I have to determine what wavelength of visible light would have a minimum at the same location. To solve this problem I fist have to calculate the constructive interference of the second order for the blue light. I use the equation dsin'thea=m'lambda. m=2 (second order) dsin'thea=(2)(460nm) =920nm Now, I can determine the destructive interference of the other light, using the equation dsin'thea=(m+1/2)'lambda=(m+1/2)'lambda m+(0,1,2...) Now that I have calculated dsin'thea=920nm, I used this value and plugged it in for dsin'thea in the destructive interference equation.(I assumed that the two angles are equal) because the problem asks for the wavelength at the same location. Thus, 920nm=(m+1/2)'lambda. m=(0,1,2,...) I calculated the first few values for 'lambda. For m=0 920nm=(0+1/2)'lambda =1.84*10^nm For m=1 920nm=(1+1/2)'lambda =613nm For m=2 920nm=(2+1/2)'lambda=368 nm From these first few values, the only one of thes wavelengths that falls in the visible light range is 613nm. Therefore, this would be the wavelength of visible light that would give a minimum. INSTRUCTOR COMMENT AND SOLUTION: good. More direct reasoning, and the fact that things like sines are never needed: ** The key ideas are that the second-order max occurs when the path difference is 2 wavelengths, and a minimum occurs when path difference is a whole number of wavelengths plus a half-wavelength (i.e., for path difference equal to 1/2, 3/2, 5/2, 7/2, ... of a wavelength). We first conclude that the path difference here is 2 * 460 nm = 920 nm. A first-order minimum (m=0) would occur for a path difference of 1/2 wavelength. If we had a first-order minimum then 1/2 of the wavelength would be 920 nm and the wavelength would be 1860 nm. This isn't in the visible range. A minimum would also occur If 3/2 of the wavelength is 920 nm, in which case the wavelength would be 2/3 * 920 nm = 613 nm, approx.. This is in the visible range. A niminum could also occur if 5/2 of the wavelength is 920 nm, but this would give us a wavelength of about 370 nm, which is outside the visible range. The same would be the case for any other possible wavelength. **
......!!!!!!!!...................................
RESPONSE --> ok.
.................................................
......!!!!!!!!...................................
11:16:52 **** query univ phy problem 35.52 (37.46 10th edition) normal 477.0 nm light reflects from glass plate (n=1.52) and interferes constructively; next such wavelength is 540.6 nm. How thick is the plate?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
11:16:54 ** The path difference for constructive interference is an integer multiple of the wavelength. The path difference here is twice the thickness. Wavelengths in glass are 477 nm / 1.52 and 540.6 nm / 1.52. So we know that double the thickness is an integer multiple of 477 nm / 1.52, and also an integer multiple of 540.6 nm / 1.52. We need to find the first integer multiple of 477 nm / 1.52 that is also an integer multiple of 540.6 nm / 1.52. We first find an integer multiply of 477 that is also an integer multiply of 540.6. Integer multiples of 540.6 are 540.6, 1081.2, 1621.8, etc. Dividing these numbers by 477 we obtain remainders 63.6, 127.2, etc. When the remainder is a multiple of 477 then we have an integer multiple of 477 which is also an integer multiple of 540.6. SInce 477 / 63.6 = 8.5, we see that 2 * 477 / 63.6 = 17. So 17 wavelengths of 477 cm light is the first multiple that is equivalent to an integer number of wavelengths of 540.6 cm light. 17 * 477 = 8109. Since 8109 / 540.6 = 15, we see that 17 wavelengths of 477 nm light span the same distance as 15 wavelengths of 540.6 nm light. It easily follows that that 17 wavelengths of (477 nm / 1.52) light span the same distance as 15 wavelengths of (540.6 nm / 1.52) light. This distance is 17 * 477 nm / 1.52 = 5335 nm. This is double the thickness of the pane. The thickness is therefore pane thickness = 5335 nm / 2 = 2667 nm. IF INTERFERENCE WAS DESTRUCTIVE: n * 477 nm / 1.52 = (n-1) * 540.6 nm / 1.52, which we solve: Multiplying by 1.52 / nm we get 477 n = 540.6 n - 540.6 n * (540.6 - 477 ) = 540.6 n * 63.6 = 540.6 n = 540.6 / 63.6 = 8.5. This is a integer plus a half integer of wavelengths, which would result in destructive interference for both waves. Multiplying 8.5 wavelengths by 477 nm / 1.52 we get round-trip distance 2667 nm, or thickness 1334 nm. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
11:16:56 **** query univ phy prob 35.50 (10th edition 37.44): 700 nm red light thru 2 slits; monochromatic visible ligth unknown wavelength. Center of m = 3 fringe pure red. Possible wavelengths? Need to know slit spacing to answer?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
11:16:58 STUDENT SOLUTION: The pure red band at m = 3 suggests that there exists interference between the wavelength of the red light and that of the other light. Since only the red light is present at m = 3 it stands to reason that the wavelength of the other light is a half of a wavelength behind the red wavelength so that when the wavelength of the red light is at its peak, the wavelength of the other light is at its valley. In this way the amplitude of the red light is at its maximum and the amplitude of the other light is at it minimum ?this explains why only the red light is exhibited in m = 3. INSTRUCTOR COMMENT At this point you've got it. At the position of the m=3 maximum for the red light the red light from the further slit travels 3 wavelengths further than the light from the closer. The light of the unknown color travels 3.5 wavelengths further. So the unknown wavelength is 3/3.5 times that of the red, or 600 nm. You don't need to know slit separation or distance (we're assuming that the distance is very large compared with the wavelength, a reasonable assumption for any distance we can actually see. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
?????~???x?? assignment #029 029. `Query 18 Physics II 11-24-2007
......!!!!!!!!...................................
11:19:40 Principles of Physics and General Physics Problem 24.14: By what percent does the speed of red light exceed that of violet light in flint glass?
......!!!!!!!!...................................
RESPONSE --> the red is about 1.62 and the violet is about 1.65. since the speed of light is inversely proportional to the indices of refraction (n2/n1)=v1/v2: 1.665/1.62=1.0028. this means red light is .28% faster than violet light in a silicate flint glass
.................................................
......!!!!!!!!...................................
11:24:38 The respective indices of refraction for violet and red light in flint glass appear from the given graph to be about 1.665 and 1.620. The speed of light in a medium is inversely proportional to the index of refraction of that medium, so the ratio of the speed of red to violet light is the inverse 1.665 / 1.62 of the ratio of the indices of refraction (red to violet). This ratio is about 1.0028, or 100.28%. So the precent difference is about .28%. It would also be possible to figure out the actual speeds of light, which would be c / n_red and c / n_violet, then divide the two speeds; however since c is the same in both cases the ratio would end up being c / n_red / ( c / n_violet) = c / n_red * n_violet / c = n_violet / n_red, and the result would be the same as that given above.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
11:26:22 **** query gen phy problem 24.34 width of 1st-order spectrum of white light (400 nm-750nm) at 2.3 m from a 7500 line/cm grating **** gen phy what is the width of the spectrum?
......!!!!!!!!...................................
RESPONSE --> this is actually problem 36. sintheta=m*lambda/d m=1 due to first order d=1/8500 cm sintheta=sintheta(410nm)=1*(4.1x10^-7)/(1/850000m)=.3485 sintheta (410nm)=.3485 theta(410nm)=20.39degrees sintheta=sintheta(750nm)=1*(7.5x10^-7)/(1/850000m)=.6375 theta(750nm)=39.605degrees 2.3(tan39.605)-2.3(tan20.39)=1.048m
.................................................
......!!!!!!!!...................................
11:36:07 GOOD STUDENT SOLUTION We are given that the spectrum is from 400-750 nm. We are also given that the screen is 2.3 meters away and that the grating is 7500 lines/cm. To find this I will find where 400 nm wavelength falls on the screen and also where 750 nm wavelength falls onto the screen. Everything in between them will be the spectrum. I will use the formula... sin of theta = m * wavelength / d since these are first order angles m will be 1. since the grating is 7500 lines/cm, d will be 1/7500 cm or 1/750000 m. Sin of theta(400nm) = 1 * (4.0 * 10^-7)/1/750000 sin of theta (400nm) = 0.300 theta (400nm) = 17.46 degrees This is the angle that the 1st order 400nm ray will make. sin of theta (750nm) = 0.563 theta (750nm) = 34.24 degrees This is the angle that the 1st order 750 nm ray will make. We were given that the screen is 2.3 meters away. If we draw an imaginary ray from the grating to to the screen and this ray begins at the focal point for the rays of the spectrum and is perpendicular to the screen (I will call this point A), this ray will make two triangles, one with the screen and the 400nm angle ray and one with the screen and the 750 nm angle ray. Using the trigonomic function; tangent, we can solve for the sides of the triangles which the screen makes up. Tan of theta = opposite / adjacent tan of 34.24 degrees = opposite / 2.3 meters 0.6806 = opposite / 2.3 meters opposite = 1.57 meters tan of 17.46 degrees = opposite / 2.3 meters opposite = 0.72 meters So from point A to where the angle(400nm) hits the screen is 0.72 meters. And from point A to where the angle(750nm) hits the screen is 1.57 meters. If you subtract the one segment from the other one you will get the length of the spectrum on the screen. 1.57 m - 0.72 m = 0.85 meters is the width of the spectrum on the screen. CORRECTION ON LAST STEP: spectrum width = 2.3m * tan (31.33)) - 2.3m * tan (17.45) = 0.68m
......!!!!!!!!...................................
RESPONSE --> ok. my numbers are slightly different than yours. my book says 8500, not 7500 and 410 not 400
.................................................
......!!!!!!!!...................................
11:36:10 **** query univ phy 36.59 phasor for 8 slits
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
11:36:12 ** If you look at the phasor diagram for phi = 3 pi / 4 you will see that starting at any vector the fourth following vector is in the opposite direction. So every slit will interfere destructively with the fourth following slit. This is because 4 * 3 pi / 4 is an odd multiple of pi. The same spacing will give the same result for 5 pi / 4 and for 7 pi / 4; note how starting from any vector it takes 4 vectors to get to the antiparallel direction. For 6 pi / 4, where the phasor diagram is a square, every slit will interfere destructively with the second following slit. For phi = pi/4 you get an octagon. For phi = 3 pi / 4 the first vector will be at 135 deg, the second at 270 deg (straight down), the third at 415 deg (same as 45 deg, up and to the right). These vectors will not close to form a triangle. The fourth vector will be at 45 deg + 135 deg = 180 deg; i.e., horizontal to the left. The next two will be at 315 deg (down and toward the right) then 90 deg (straight up). The last two will be at 225 deg (down and to left) and 360 deg (horiz to the right). The resulting endpoint coordinates of the vectors, in order, will be -0.7071067811, .7071067811 -0.7071067811, -0.2928932188 0, 0.4142135623 -1, 0.4142135623 -0.2928932188, -0.2928932188 -0.2928932188, 0.7071067811 -1, 0 0, 0 For phi = 5 pi / 4 each vector will 'rotate' relative to the last at angle 5 pi / 4, or 225 deg. To check yourself the first few endpoints will be -0.7070747217, -0.7071290944; -0.7070747217, 0.2928709055; 0, -0.4142040038 and the final endpoint will again be (0, 0). For 6 pi / 4 you will get a square that repeats twice. For 7 pi / 4 you get an octagon. NEW PROBLEM: The longest wavelength is 700 nm and slit spacing is about 1250 nm. The path difference can't exceed the slit spacing, which is less than double the 700 nm spacine. So there are at most central max (path difference zero) and the first-order max (path difference one wavelength). Note that there will be a second-order max for wavelengths less than about 417 nm. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
?w?????????? assignment #030 030. `Query 19 Physics II 11-24-2007
......!!!!!!!!...................................
11:39:34 Principles of Physics and General College Physics Problem 24.54: What is Brewster's angle for an air-glass interface (n = 1.52 for glass)?
......!!!!!!!!...................................
RESPONSE --> arctan(1.52)=56.66degrees
.................................................
......!!!!!!!!...................................
11:39:46 Brewster's angle is the smallest angle theta_p of incidence at which light is completely polarized. This occurs when tan(theta_p) = n2 / n1, where n2 is the index of refraction on the 'other side' of the interface. For an air-glass interface, n1 = 1 so tan( theta_p) = n2 / 1 = n2, the index of refraction of the glass. We get tan(theta_p) = 1.52 so that theta_p = arcTan(1.52). This is calculated as the inverse tangent of 1.52, using the 2d function-tan combination on a calculator. WE obtain theta_p = 56.7 degrees, approximately.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
11:41:35 gen phy problem 24.43 foil separates one end of two stacked glass plates; 28 lines observed for normal 650 nm light gen phy what is the thickness of the foil?
......!!!!!!!!...................................
RESPONSE --> well this is problem 44. since a dark band is caused by wavelengths being out of phase by half a cycle. therefore, since there are 28 dark bands, there are 27 half wavelengths: 27*.5*(670nm)=9045nm m=27 lambda=670nm t=.5(27)(670nm)=9.045x10^3nm
.................................................
......!!!!!!!!...................................
11:44:26 STUDENT SOLUTION: To solve this problem, I refer to fig. 24-31 in the text book as the problem stated. To determine the thickness of the foil, I considered the foil to be an air gap. I am not sure that this is correct. Therefore, I used the equation 2t=m'lambda, m=(0,1,2,...). THis is where the dark bands occur . lambda is given in the problem as 670nm and m=27, because between 28 dark lines, there are 27 intervals. Solve for t(thickness): t=1/2(2)(670nm) =9.05 *10^3nm=9.05 um INSTRUCTOR RESPONSE WITH DIRECT-REASONING SOLUTION:** Your solution looks good. Direct reasoning: ** each half-wavelength of separation causes a dark band so there are 27 such intervals, therefore 27 half-wavelengths and the thickness is 27 * 1/2 * 670 nm = 9000 nm (approx) **
......!!!!!!!!...................................
RESPONSE --> ok.
.................................................
......!!!!!!!!...................................
11:45:54 **** gen phy how many wavelengths comprise the thickness of the foil?
......!!!!!!!!...................................
RESPONSE --> thickness=9.045x10^3nm=9.045x10^-8m m=2(t)/lambda =2(9.045x10^-8m)/6.7x10^-7m)=.27
.................................................
......!!!!!!!!...................................
11:47:17 GOOD STUDENT SOLUTION: To calculate the number of wavelengths that comprise the thickness of the foil, I use the same equation as above 2t=m'lambda and solve for m. 2(9.05 um)=m(6.70 *10^-7m) Convert all units to meters. m=27 wavelengths.
......!!!!!!!!...................................
RESPONSE --> ok. I think my units may have been off. I seem to be off by two orders of magnitude.
.................................................