#$&* course mth158 001. `* 1
.............................................
Given Solution: * * ** Counting numbers are the numbers 1, 2, 3, .... . None of the given numbers are counting numbers Rational numbers are numbers which can be expressed as the ratio of two integers. 1/2+10.3 are rational numbers. Irrational numbers are numbers which can be expressed as the ratio of two integers. {-sqrt(2)}, pi+sqrt(2) are irrational numbers.. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: * R.1.44 \ 32 (was R.1.24) Write in symbols: The product of 2 and x is the product of 4 and 6 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2x = 4*6 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** The product of 2 and x is 2 * x and the product of 4 and 6 is 4 * 6. To say that these are identical is to say that 2*x=4*6. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: * R.1.62 \ 50 (was R.1.42) Explain how you evaluate the expression 2 - 5 * 4 - [ 6 * ( 3 - 4) ] YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2 - 5 * 4 - [6 * (3-4)] …do what’s inside the parentheses first 2 - 5 * 4 - [6 * -1] …multiply inside the brackets 2 - 5 * 4 - (-6) ..change the negative number to a positive number 2 - 5 * 4 + 6 ..do the multiplication 2 - 20 + 6 ..subtract then add left to right -12 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * **Starting with 2-5*4-[6*(3-4)]. First you evaluate the innermost group to get 2-5*4-[6*-1] . Then multiply inside brackets to get 2-5*4+6. Then do the multiplication to get 2-20+6. Then add and subtract in order, obtaining -12. ** ********************************************* Question: * R.1.98 \ 80 (was R.1.72) Explain how you use the distributive property to remove the parentheses from the express (x-2)(x-4). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (x-2) (x-4) x2 -4x -2x + 8 x2 - 6x + 8 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** COMMON ERROR: Using FOIL. FOIL is not the Distributive Law. FOIL works for binomial expressions. FOIL follows from the distributive law but is of extremely limited usefulness and the instructor does not recommend relying on FOIL. Starting with (x-2)(x-4) ; one application of the Distributive Property gives you x(x-4) - 2(x-4) . Applying the property to both of the other terms we get x^2 - 4x - (2x -8). Simplifying: x^2 - 4x - 2x + 8 or x^2 - 6x + 8. * &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I should not use foil on this problem like I did! ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: * R.1.102 \ 86 (was R.1.78) Explain why (4+3) / (2+5) is not equal to 4/2 + 3/5. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (4+3) itself is a mini problem that needs to be solved before dividing by (2+5). 4+ 3 = 7 and 2 + 5 = 7 in which would give you an answer of 1. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** Good answer but at an even more fundamental level it comes down to order of operations: (4+3)/(2+5) means 7/7 which is equal to 1. By order of operations, in which multiplications and divisions precede additions and subtractions, 4/2+3/5 means (4/2) + (3/5), which gives us 2+3/5 = 2 3/5 * Add comments on any surprises or insights you experienced as a result of this assignment. "
#$&* course mth 158 If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: * * ** Starting with (2x-3)/y we substitute x=-2 and y=3 to get (2*(-2) - 3)/3 = (-4-3)/3= -7/3. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * R.2. 55 (was R.2.45) Evaluate for x = 3 and y = -2: | |4x| - |5y| | and explain how you got your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: | 4x | - |5y| |4(3)| - |5(-2)| |12-10| |2| = 2 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** Starting with | | 4x |- | 5y | | we substitute x=3 and y=-2 to get | | 4*3 | - | 5*-2 | | = | | 12 | - | -10 | | = | 12-10 | = | 2 | = 2. ** * R.2.64 (was R.2.54) Explain what values, if any, cannot be present in the domain of the expression (-9x^2 - x + 1) / (x^3 + x) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: You cannot have zero as a denominator because divison by zero is underdefined. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** The denominator of this expression cannot be zero, since division by zero is undefined. Since x^3 + x factors into (x^2 + 1) ( x ) we see that x^3 + x = 0 is, and only if, either x^2 + 1 = 0 or x = 0. Since x^2 cannot be negative x^2 + 1 cannot be 0, so x = 0 is indeed the only value for which x^3 + x = 0. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I should have went into more detail and shown more work. ------------------------------------------------ Self-critique Rating: 1 ********************************************* Question: * R.2.76 \ 73 (was R.4.6). What is -4^-2 and how did you use the laws of exponents to get your result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: You must first do exponents before multiplying. 4 is raised to the -2 power. Your answer would be -1/16 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** order of operations implies exponentiation before multiplication; the - in front of the 4 is not part of the 4 but is an implicit multiplication by -1. Thus only 4 is raised to the -2 power. Starting with the expression -4^(-2): Since a^-b = 1 / (a^b), we have 4^-2 = 1 / (4)^2 = 1 / 16. The - in front then gives us -4^(-2) = - ( 1/ 16) = -1/16. If the intent was to take -4 to the -2 power the expression would have been written (-4)^(-2).** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * Extra Problem. What is (3^-2 * 5^3) / (3^2 * 5) and how did you use the laws of exponents to get your result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3-2 * 53 / 32 * 5 3-2 / 32 * 52 / 5 3 (-2-2) * 5 (3-1) 3-4 * 52 1/34 * 52 1/81 * 25 - 25/81 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Starting with (3^(-2)*5^3)/(3^2*5): Grouping factors with like bases we have 3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get 3^(-2 -2) * 5^(3-1), which gives us 3^-4 * 5^2. Using a^(-b) = 1 / a^b we get (1/3^4) * 5^2. Simplifying we have (1/81) * 25 = 25/81. ** STUDENT QUESTION: I do not understand how we can ungroup the (3^(-2) *5^3). INSTRUCTOR RESPONSE Hopefully this will clarify that operation: (a / c) * (b / d) = (a * b) / (c * d), since you multiply the numerators to get the numerator and the denominators to get the denominator. So it must be true that (a * b) / (c * d) = (a / c) * (b / d). Now substitute a = 3^(-2), b = 5^3, c = 3^2 and d = 5. You find that (3^(-2)*5^3)/(3^2*5) = 3^(-2)/3^2 * 5^3 / 5. STUDENT SOLUTION (with error) (3^-2*5^3)/(3^2*5) = 1/9*125/9*5=13.8888/45 INSTRUCTOR CRITIQUE You almost had it, but you left off the grouping of the denominator. 1/9*125/(9*5) would have worked. 1/9 * 125 = 125 / 9. Then dividing this by 9 * 5 gives us (125 / 9) * (1 / 45) = 125 / 405, which reduces to 25 / 81. It's more instructive (and in the long run easier) to keep things in exponential form, though, and take the powers at the end: (3^-2*5^3)/(3^2*5) =(1/3^2 * 5^3) / (3^2 * 5) =(5^3 / 3^2) / (3^2 * 5) =5^3 / (3^2 * 3^2 * 5) =5^2 / (3^4) =25 / 81. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * R.2.94. Express [ 5 x^-2 / (6 y^-2) ] ^ -3 with only positive exponents and explain how you used the laws of exponents to get your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I realize the laws of exponents say that we can change around the order of things in order to make the exponents positive; however, I don’t see how we moved this problem around. confidence rating #$&*: 0 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: [ 5 x^-2 / (6 y^-2) ] ^ -3 = (5 x^-2)^-3 / (6 y^-2)^-3, since (a/b)^c = a^c / b^c. This simplifies to 5^-3 (x^-2)^-3 / [ 6^-3 (y^-2)^-3 ] since (ab)^c = a^c b^c. Then since (a^b)^c = a^(bc) we have 5^-3 x^6 / [ 6^-3 y^6 ] . We rearrange this to get the result 6^3 x^6 / (5^3 y^6), since a^-b = 1 / a^b. STUDENT QUESTION: I do not see how you can take and seperate the problem down like this has it seems to just have reversed the problem around in a different ordering and I do not see how this changed the exponets from being negativeIs there anyway you can explain this problem in a little more depth INSTRUCTOR RESPONSE: A fundamental law of exponents is that exponentiation distributes over multiplication, so that (a * b) ^ c = a^c * b^c and(a / b) ^ c = a^c / b^c More specifically, if c = -3 then we have ( a * b ) ^ (-3) = a * (-3) * b^(-3) and( a / b ) ^ (-3) = a ^ (-3) / b^(-3). Now a ^ (3) / b^(3) = 1 / a ^ (3) / (1 / b^(3)) and1 / a ^ (3) / (1 / b^(3)) = 1 / a^3 * (b^3 / 1) = b^3 / a^3. This principle applies to any string of multiplcations and division, so for example ( a * b / (c * d) ) ^ e = a^e * b^e / (c^e * d^e). If e = -3 then we would have ( a * b / (c * d) ) ^ (-3) = a^(-3) * b^(-3) / (c^(-3) * d^(-3)). Since the -3 power is the reciprocal of the 3 power this expression becomes 1/a^(3) * (1/b^(3)) / (1/c^(3) * (1/d^(3))), which is easily seen to be equal to 1 / (a^3 * b^3) / (1 / (c^3 * d^3) ). Dividing by (1 / (c^3 * d^3) ) is the same as multiplying by (c^3 * d^3) / 1 so 1 / (a^3 * b^3) / (1 / (c^3 * d^3) ) = 1 / (a^3 * b^3) * (c^3 * d^3) = (c^3 * d^3) / (a^3 * b^3). You should have written the above expressions, which are difficult to read in this notation, on paper, applying the order of operations. The expressions you wrote down should look like the ones below. Be sure you understand the translation from the 'typewriter notation' above to the standard notation depicted below, and be sure you know how to write each of the expressions depicted below in standard notation: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):
.............................................
Given Solution: * * ** ERRONEOUS STUDENT SOLUTION: (-8x^3)^-2 -1/(-8^2 * x^3+2) 1/64x^5 INSTRUCTOR COMMENT: 1/64x^5 means 1 / 64 * x^5 = x^5 / 64. This is not what you meant but it is the only correct interpretation of what you wrote. Also it's not x^3 * x^2, which would be x^5, but (x^3)^2. There are several ways to get the solution. Two ways are shown below. They make more sense if you write them out in standard notation. ONE CORRECT SOLUTION: (-8x^3)^-2 = (-8)^-2*(x^3)^-2 = 1 / (-8)^2 * 1 / (x^3)^2 = 1/64 * 1/x^6 = 1 / (64 x^6). Alternatively (-8 x^3)^-2 = 1 / [ (-8 x^3)^2] = 1 / [ (-8)^2 (x^3)^2 ] = 1 / ( 64 x^6 ). ** * R.2.90 (was R.4.36). Express (x^-2 y) / (x y^2) with only positive exponents and explain how you used the laws of exponents to get your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (1/x2) * y/ (x*y2) y / (x2 * x * y2) y / (x3y2) 1 / x3y
.............................................
Given Solution: (x^-2 y) / (x y^2) = (1/x^2) * y / (x * y^2) = y / ( x^2 * x * y^2) = y / (x^3 y^2) = 1 / (x^3 y). Alternatively, or as a check, you could use positive and negative exponents, then in the last step express everything in terms of positive exponents, as follows: (x^-2y)/(xy^2) = x^-2 * y * x^-1 * y^-2 = x^(-2 - 1) * y^(1 - 2) = x^-3 y^-1 = 1 / (x^3 y). STUDENT QUESTION I wrote it down on paper and I am still a little confused. I understand it down to the 3rd step and then I lose the meaning of the law of exponents. Why does it change to: (1/x^2 * y) multiplied by 1/xy^2 the multiplication throws me off. INSTRUCTOR RESPONSE (1/x^2 * y) means ( (1/x^2) * y, which is the same as (y / x^2).So (1/x^2 * y) / (x * y^2) means(y / x^2) / (x * y^2). Division by (x * y^2) is the same as multiplication by 1 / (x * y^2) .So (y / x^2) / (x * y^2) means (y / x^2) * (1 / (x * y^2)). Multiplying the numerators and denominators of these fractions we have(y * 1) / (x^2 * x * y^2), which isy / (x^3 * y^2). Dividing both numerator and denominator by y we have1 / (x^3 * y). Let me know if this doesn't help. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * Extra Problem. . Express 4 x^-2 (y z)^-1 / [ (-5)^2 x^4 y^2 z^-5 ] with only positive exponents and explain how you used the laws of exponents to get your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] (yz)^-1 = y^1 * z^-1: 4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} (4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) (4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) (4/25) * x^-6 * y^-3 * z^4 4z^4/ (25x^6 * y^3 ) confidence rating #$&*: 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** Starting with 4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1: 4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression: (4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents: (4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further: (4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents: 4z^4/ (25x^6 * y^3 ) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: 2 ********************************************* Question: * R.2.122 (was R.4.72). Express 0.00421 in scientific notation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 4.21 * 10-3 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** 0.00421 in scientific notation is 4.21*10^-3. This is expressed on many calculators as 4.21 E-4. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * R.2.128 (was R.4.78). Express 9.7 * 10^3 in decimal notation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 9,700 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** 9.7*10^3 in decimal notation is 9.7 * 1000 = 9700 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * R.2.152 \ 150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: |97 - 98.6 | > 1.5 is true because 1.6 > 1.5 |100-98.6| > 1.5 is untrue because 1.4 is not > 1.5 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5. But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or | 1.4 | > 1.5, giving us 1.4>1.5, which is an untrue statement. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: * R.2.152 \ 150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: |97 - 98.6 | > 1.5 is true because 1.6 > 1.5 |100-98.6| > 1.5 is untrue because 1.4 is not > 1.5 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5. But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or | 1.4 | > 1.5, giving us 1.4>1.5, which is an untrue statement. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!
#$&* course mth 158 If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: * * ** The Pythagorean Theorem tells us that c^2 = a^2 + b^2, where a and b are the legs and c the hypotenuse. Substituting 14 and 48 for a and b we get c^2 = 14^2 + 48^2, so that c^2 = 196 + 2304 or c^2 = 2500. This tells us that c = + sqrt(2500) or -sqrt(2500). • Since the length of a side can't be negative we conclude that c = +sqrt(2500) = 50. ** ********************************************* Question: * R.3.22 \ 18 (was R.3.12). Is a triangle with legs of 10, 24 and 26 a right triangle, and how did you arrive at your answer? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A2+b2=c2 262+102=242 676 = 676 yes it is a right triangle confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** Using the Pythagorean Theorem we have c^2 = a^2 + b^2, if and only if the triangle is a right triangle. Substituting we get 26^2 = 10^2 + 24^2, or 676 = 100 + 576 so that 676 = 676 This confirms that the Pythagorean Theorem applies and we have a right triangle. ** Self-critique (if necessary) ------------------------------------------------ Self-critique Rating: ********************************************* Question: * R.3.34 \ 30 (was R.3.24). What are the volume and surface area of a sphere with radius 3 meters, and how did you obtain your result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 4/3 PI (3m)3 4/3 PI (3m)3 4/3 PI 9m3 V = 36PIm3 Surface area = 4PIr2 4PI (3m)2 4PI 9m2 surface area = 36PIm2 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** To find the volume and surface are a sphere we use the given formulas: Volume = 4/3 * pi * r^3 V = 4/3 * pi * (3 m)^3 V = 4/3 * pi * 27 m^3 V = 36pi m^3 Surface Area = 4 * pi * r^2 S = 4 * pi * (3 m)^2 S = 4 * pi * 9 m^2 S = 36pi m^2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * R.3.34 \ 30 (was R.3.24). What are the volume and surface area of a sphere with radius 3 meters, and how did you obtain your result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 4/3 PI (3m)3 4/3 PI (3m)3 4/3 PI 9m3 V = 36PIm3 Surface area = 4PIr2 4PI (3m)2 4PI 9m2 surface area = 36PIm2 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** To find the volume and surface are a sphere we use the given formulas: Volume = 4/3 * pi * r^3 V = 4/3 * pi * (3 m)^3 V = 4/3 * pi * 27 m^3 V = 36pi m^3 Surface Area = 4 * pi * r^2 S = 4 * pi * (3 m)^2 S = 4 * pi * 9 m^2 S = 36pi m^2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: #*&!