Assignment 37

#$&*

course mth 158

037. * 37

*********************************************

Question: * * * 7th edition only 5.4.14. Express the equation

2.2^3 = N

in logarithmic notation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log{base b}(y)=x

log{base 2.2}(N) = 3

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

b^x = y is expressed in logarithmic notation as log{base b}(y) = x. In this case b = 2.2, x = 3 and y = N.

So we write lob{base b}(y) = x as

log{base 2.2}(N) = 3.

8th edition only 6.4.14. e^2.2 = N. Express in logarithmic notation.

b^x = y is expressed in logarithmic notation as log{base b}(y) = x. In this case b = 3, x = 2.2 and y = N.

So we write lob{base b}(y) = x as

log{base e}(N) = 2.2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * extra problem / 7th edition 5.4.18. x^pi = 3. Express in logarithmic notation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

log{base x}(3) = pi

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

b^a = y is expressed in logarithmic notation as log{base b}(y) = a. In this case b = x, a = pi and y = 3.

So we write lob{base b}(y) = a as

log{base x}(3) = pi.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * extra problem / 7th edition 5.4.26.. log{base 2}?? = x. Express the equation

log{base 2} ( A ) = x

in exponential notation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2^x = A

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

log{base b}(y) = a is expressed in exponential notation as

b^a = y.

In this case b = 2, a = x and y = A so the expression b^a = y is written as

2^x = A.

Self-critique (if necessary)

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.4.30 / 7th edition 5.4.36. Exact value of log{base 1/3}(9)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(1/3)^a=9

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * log{base b}(y) = a is expressed in exponential notation as

b^a = y.

In this case b = 1/3, a is what we are trying to find and y = 9 so the expression b^a = y is written as

(1/3)^a = 9.

Noting that 9 is an integer power of 3 we expect that a will be an integer power of 1/3. Since 9 = 3^2 we might try (1/3)^2 = 9, but this doesn't work since (1/3)^2 = 1/9, not 9. We can correct this by using the -2 power, which is the reciprocal of the +2 power: (1/3)^-2 = 1/ ( 1/3)^2 = 1 / (1/9) = 9.

So log

base 1/3}(9) = -2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 1

*********************************************

Question:. What is the domain of G(x) = log{base 1 / 2}(x^2-1)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(-infinity, -1) U (1, infinity).

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

For any positive value of b the domain of log{base b}(x) consists of all positive real numbers. It follows that log{base 1/2}(x^2-1) consists of all real numbers for which x^2 - 1 > 0.

We solve x^2 - 1 > 0 for x by first finding the values of x for which x^2 - 1 = 0. We can factor the expression to get (x-1)(x+1) = 0, which is so if x-1 = 0 or if x + 1 = 0. Our solutions are therefore x = 1 and x = -1.

It follows that x^2 - 1 is either positive or negative on each of the intervals (-infinity, -1), (-1, 1) and (1, infinity). We can determine which by substituting any value from each interval into x^2 - 1.

On the interval (-1, 1) we can just choose x = 0, which substituted into x^2 - 1 gives us -1. We conclude that x^2 - 1 < 0 on this interval.

On the interval (-infinity, -1) we could substitute x = -2, giving us x^2 - 1 = 4 - 1 = 3, which is > 0. So x^2 - 1 > 0 on (-infinity, -1).

Substituting x = 2 to test the interval (1, infinity) we obtain the same result so that x^2 - 1 > 0 on (1, infinity).

We conclude that the domain of this function is (-infinity, -1) U (1, infinity).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.4.58 / 7th edition 5.4.62. a such that graph of log{base a}(x) contains (1/2, -4).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(a ^ (-4))^(-1/4) = 1/2 ^ (-1/4)

(a^(-4))^(-1/4)) = a^(-4 * (-1/4)) = a^1 = a

1/2 ^(-1/4) = 16

a = (1/2)^-(1/4) = 16

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

log{base a}(x) = y if a^y = x.

The point (1/2, -4) will lie on the graph if y = -4 when x = 1/2, so we are looking for a value of a such that a ^ (-4) = 1/2.

* * We easily solve for a by taking the -1/4 power of both sides:

(a ^ (-4))^(-1/4) = 1/2 ^ (-1/4) so since (a^(-4))^(-1/4)) = a^(-4 * (-1/4)) = a^1 = a, and 1/2 ^(-1/4) = 16, we get

a = (1/2)^-(1/4) = 16.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: Use transformations to graph h(x) = ln(4-x). Give domain, range, asymptotes.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = ln(x) vertical asymptote at the negative y axis and passes through the points (1, 0) and (e, 1)

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The graph of y = ln(x) is concave down, has a vertical asymptote at the negative y axis and passes through the points (1, 0) and (e, 1) (the latter is approximately (2.71828, 1) ).

The graph of y = ln(x - 4), where x is replaced by x - 4, is shifted +4 units in the x direction so the vertical asymptote shifts 4 units right to the line x = 4. The points (1, 0) and (e, 1) shift to (1+4, 0) = (5, 0) and (e + 4, 1) (the latter being approximately (3.71828, 1).

Since x - 4 = - (4 - x), the graph of y = ln(4 - x) is 'flipped' about the y axis relative to ln(x-4), so it the vertical asymptote becomes x = -4 and the graph passes through the points (-5, 0) and (-e-4, 1). The graph will still be concave down.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.4.98 / 7th edition 5.4.102. Solve log{base 6}(36) = 5x + 3.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X = -1/5

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * log{base b}(y) = a is expressed in exponential notation as

b^a = y.

log{base 6}(36) = 5x + 3.

In this case b = 6, a is what we are trying to find and y = 5x + 3 so the expression b^a = y is written as

6^(5x+3) = 36.

We know that 6^2 = 36, so (5x + 3) = 2. We easily solve this equation to get x = -1 / 5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.4.122 / 7th edition 6.3.102. F(t) = 1 - e^(-.15 t) prob of car arriving within t minute of 5:00. How long does it take for the probability to reach 50%? How long to reach 80%?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

F(t), so F(t) = 50% = .5 when 1 - e^(-.15 t) = .5

e^(-.15 t) = .5.

ln( e^(-.15 t) ) = ln(.5), which tells us that

-.15 t = ln(.5)

t = -ln(.5)/.15 = 4.6

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The probability is F(t), so F(t) = 50% = .5 when 1 - e^(-.15 t) = .5.

We subtract 1 from both sides the multiply by -1 to rearrange this equation to the form

e^(-.15 t) = .5.

Taking the natural log of both sides we get

ln( e^(-.15 t) ) = ln(.5), which tells us that

-.15 t = ln(.5) so that

t = -ln(.5)/.15 = 4.6, approx..

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. Let me know if you have questions. &#