course Mth 158
......!!!!!!!!...................................
RESPONSE --> a^2 + b^2 = c^2 14^2 + 48^2 = c^2 196 + 2304 = c^2 2500 = c^2 50 = c
.................................................
......!!!!!!!!...................................
14:12:42 ** The Pythagorean Theorem tells us that c^2 = a^2 + b^2, where a and b are the legs and c the hypotenuse. Substituting 14 and 48 for a and b we get c^2 = 14^2 + 48^2, so that c^2 = 196 + 2304 or c^2 = 2500. This tells us that c = + sqrt(2500) or -sqrt(2500). Since the length of a side can't be negative we conclude that c = +sqrt(2500) = 50. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
14:14:05 query R.3.18 (was R.3.12). Is a triangle with legs of 10, 24 and 26 a right triangle, and how did you arrive at your answer?
......!!!!!!!!...................................
RESPONSE --> 10^2 = 100 24^2 = 576 26^2 = 676 100+576=676 676 = 676 yes this is a right triangle
.................................................
......!!!!!!!!...................................
14:14:15 ** Using the Pythagorean Theorem we have c^2 = a^2 + b^2, if and only if the triangle is a right triangle. Substituting we get 26^2 = 10^2 + 24^2, or 676 = 100 + 576 so that 676 = 676 This confirms that the Pythagorean Theorem applies and we have a right triangle. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
14:19:44 query R.3.30 (was R.3.24). What are the volume and surface area of a sphere with radius 3 meters, and how did you obtain your result?
......!!!!!!!!...................................
RESPONSE --> V=4/3 pi r^3 V = 4/3 pi 3^3 V= 4/3 pi 27 V = 113.097 m^3 S=4 pi r^2 S=4 pi 3^2 S=4 pi 9 S= 113.097m^2
.................................................
......!!!!!!!!...................................
14:19:50 ** To find the volume and surface are a sphere we use the given formulas: Volume = 4/3 * pi * r^3 V = 4/3 * pi * 3^3 V = 4/3 * pi * 27 V = 36pi m^3 Surface Area = 4 * pi * r^2 S = 4 * pi * 3^2 S = 4 * pi * 9 S = 36pi m^2. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
14:26:24 query R.3.42 (was R.3.36). A pool of radius 10 ft is enclosed by a deck of width 3 feet. What is the area of the deck and how did you obtain this result?
......!!!!!!!!...................................
RESPONSE --> The pool area is: A=pi 10^2 = 314.159 ft^2 The radius of the deck is 10 + 3 = 13 ft The area of the deck plus the pool is: A=pi 13^2 = 530.929 ft^2 530.929 ft^2 - 314.159 ft^2 = 216.77 ft^2 The area of the deck is 216.77 ft^2
.................................................
......!!!!!!!!...................................
14:26:31 ** The deck plus the pool gives you a circle of radius 10 ft + 3 ft = 13 ft. The area of the deck plus the pool is therefore pi * (13 ft)^2 = 169 pi ft^2. So the area of the deck must be deck area = area of deck and pool - area of pool = 169 pi ft^2 - 100 pi ft^2 = 69 pi ft^2. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
"