course
......!!!!!!!!...................................
RESPONSE --> (2*-2 - 3)/3= multiply 2 and -2 first (-4-3)/3 =subtract -4 and -3 -7/3
.................................................
......!!!!!!!!...................................
17:12:08 ** Starting with (2x-3)/y we substitute x=-2 and y=3 to get (2*(-2) - 3)/3 = (-4-3)/3= -7/3. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:17:33 query R.2. 55 (was R.2.45) Evaluate for x = 3 and y = -2: | |4x| - |5y| | and explan how you got your result.
......!!!!!!!!...................................
RESPONSE --> | |4*3| - |5*-2| | = | |12| - |-10|| = |12 - 10 | = 2
.................................................
......!!!!!!!!...................................
17:17:42 ** Starting with | | 4x |- | 5y | | we substitute x=3 and y=-2 to get | | 4*3 | - | 5*-2 | | = | | 12 | - | -10 | | = | 12-10 | = | 2 | = 2. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:22:55 query R.2.64 (was R.2.54) Explain what values, if any, must not be present in the domain of the expression (-9x^2 - x + 1) / (x^3 + x)
......!!!!!!!!...................................
RESPONSE --> X cannot equal 0. since anything multiplied or divided with 0 always equals 0.
.................................................
......!!!!!!!!...................................
17:23:17 ** The denominator of this expression cannot be zero, since division by zero is undefined. Since x^3 + x factors into (x^2 + 1) ( x ) we see that x^3 + x = 0 only if x^2 + 1 = 0 or x = 0. Since x^2 cannot be negative x^2 + 1 cannot be 0, so x = 0 is indeed the only value for which x^3 + x = 0. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:26:40 query R.2.73 (was R.4.6). What is (-4)^-2 and how did you use the laws of exponents to get your result?
......!!!!!!!!...................................
RESPONSE --> -4^ -2 = 1/16 since a ^ -n = 1/a^n
.................................................
......!!!!!!!!...................................
17:26:47 **Since a^-b = 1 / (a^b), we have (-4)^-2 = 1 / (-4)^2 = 1 / 16. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:36:32 query Extra Problem. What is (3^-2 * 5^3) / (3^2 * 5) and how did you use the laws of exponents to get your result?
......!!!!!!!!...................................
RESPONSE --> (3^-2 * 5^3) / (3^2 * 5) = 3^ (-2-2) * 5^ (3-1) = 3^ -4 * 5^ 2= 1/3^4 *25 = 1/81 * 25 = 25/81
.................................................
......!!!!!!!!...................................
17:37:00 ** (3^(-2)*5^3)/(3^2*5). Grouping factors with like bases we have 3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get 3^(-2 -2) * 5^(3-1), which gives us 3^-4 * 5^2. Using a^(-b) = 1 / a^b we get (1/3^4) * 5^2. Simplifying we have (1/81) * 25 = 25/81. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:49:03 [ 5 x^-2 / (6 y^-2) ] ^ -3 = (5 x^-2)^-3 / (6 y^-2)^-3, since (a/b)^c = a^c / b^c. This simplifies to 5^-3 (x^-2)^-3 / [ 6^-3 (y^-2)^-3 ] since (ab)^c = a^c b^c. Then since (a^b)^c = a^(bc) we have 5^-3 x^6 / [ 6^-3 y^6 ] . We rearrange this to get the result 6^3 x^6 / (5^3 y^6), since a^-b = 1 / a^b.
......!!!!!!!!...................................
RESPONSE --> [ 5 x^-2 / (6 y^-2) ] ^ -3= 5^-3x^6 / 6^-3 y^6 = 1/5^3*x^6 / 1/6^3*y^6 = 6^3x^6 / 5^3y^6
.................................................
......!!!!!!!!...................................
17:53:52 query Extra Problem. Express (-8 x^3) ^ -2 with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> (-8 x^3) ^ -2 = -8^-2 * x^-6 = 1/-8^2 * 1/x^6 = 1/64 * 1/x^6 = 1/64x^6
.................................................
......!!!!!!!!...................................
17:54:21 ** ERRONEOUS STUDENT SOLUTION: (-8x^3)^-2 -1/(-8^2 * x^3+2) 1/64x^5 INSTRUCTOR COMMENT:1/64x^5 means 1 / 64 * x^5 = x^5 / 64. This is not what you meant but it is the only correct interpretation of what you wrote. Also it's not x^3 * x^2, which would be x^5, but (x^3)^2. There are several ways to get the solution. Two ways are shown below. They make more sense if you write them out in standard notation. ONE CORRECT SOLUTION: (-8x^3)^-2 = (-8)^-2*(x^3)^-2 = 1 / (-8)^2 * 1 / (x^3)^2 = 1/64 * 1/x^6 = 1 / (64 x^5). Alternatively (-8 x^3)^-2 = 1 / [ (-8 x^3)^2] = 1 / [ (-8)^2 (x^3)^2 ] = 1 / ( 64 x^6 ). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:57:02 query R.2.90 (was R.4.36). Express (x^-2 y) / (x y^2) with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> (x^-2 y) / (x y^2) = x^(-2-1) * y^(1-2) = x^-3 * y^-1 = 1/x^3y^1
.................................................
......!!!!!!!!...................................
17:57:14 ** (1/x^2 * y) / (x * y^2) = (1/x^2 * y) * 1 / (x * y^2) = y * 1 / ( x^2 * x * y^2) = y / (x^3 y^2) = 1 / (x^3 y). Alternatively, or as a check, you could use exponents on term as follows: (x^-2y)/(xy^2) = x^-2 * y * x^-1 * y^-2 = x^(-2 - 1) * y^(1 - 2) = x^-3 y^-1 = 1 / (x^3 y).**
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
19:13:19 query Extra Problem. . Express 4 x^-2 (y z)^-1 / [ (-5)^2 x^4 y^2 z^-5 ] with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> 4 x^-2 (y z)^-1 / [ (-5)^2 x^4 y^2 z^-5 ]= 4x^-2 y^-1 z^-1 / 25 x^4 y^2 Z^-5 = 4/25 * x^(-2-4) * y^(-1-2) * z^(-1+5) = 4/25 * x^-6 * y^-3 * z^4 = 4/25 * 1/x^6 * 1/y^3 * z^4= 4z^4/25x^6y^3
.................................................
......!!!!!!!!...................................
19:13:24 ** Starting with 4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1: 4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression: (4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents: (4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further: (4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents: 4z^4/ (25x^6 * y^3 ) **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
19:14:10 query R.2.122 (was R.4.72). Express 0.00421 in scientific notation.
......!!!!!!!!...................................
RESPONSE --> 4.21*10^-3
.................................................
......!!!!!!!!...................................
19:14:16 ** 0.00421 in scientific notation is 4.21*10^-3. This is expressed on many calculators as 4.21 E-4. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
19:15:02 query R.2.128 (was R.4.78). Express 9.7 * 10^3 in decimal notation.
......!!!!!!!!...................................
RESPONSE --> 9.7 * 10^3 = 9700 move decimal to right 3 places
.................................................
......!!!!!!!!...................................
19:15:06 ** 9.7*10^3 in decimal notation is 9.7 * 1000 = 9700 **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
19:17:48 query R.2.150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy?
......!!!!!!!!...................................
RESPONSE --> | T - 98.6 | > 1.5 | 97 - 98.6 | > 1.5 1.6>1.5 (Unhealthy) | T - 98.6 | > 1.5 | 100 - 98.6 | > 1.5 1.4>1.5 (Healthy)
.................................................
......!!!!!!!!...................................
19:17:56 ** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5. But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or | 1.4 | > 1.5, giving us 1.4>1.5, which is an untrue statement. **
......!!!!!!!!...................................
RESPONSE --> ok
................................................."