course Mth 158
......!!!!!!!!...................................
RESPONSE --> sqrt( 4 ( x+4)^2 ) sqrt(4) * sqrt(x+4)^2 2 * x+4
.................................................
......!!!!!!!!...................................
19:21:09 ** sqrt(a b) = sqrt(a) * sqrt(b) and sqrt(x^2) = | x | (e.g., sqrt( 5^2 ) = sqrt(25) = 5; sqrt( (-5)^2 ) = sqrt(25) = 5. In the former case x = 5 so the result is x but in the latter x = -5 and the result is | x | ). Using these ideas we get sqrt( 4 ( x+4)^2 ) = sqrt(4) * sqrt( (x+4)^2 ) = 2 * | x+4 | **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
19:26:52 Extra Question: What is the simplified form of (24)^(1/3) and how did you get this result?
......!!!!!!!!...................................
RESPONSE --> (24)^(1/3) (8 * 3)^(1/3) 8^(1/3) * 3^(1/3) 2 * 3^(1/3)
.................................................
......!!!!!!!!...................................
19:26:56 ** (24)^(1/3) = (8 * 3)^(1/3) = 8^(1/3) * 3^(1/3) = 2 * 3^(1/3) **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
19:51:29 Extra Question: What is the simplified form of (x^2 y)^(1/3) * (125 x^3)^(1/3) / ( 8 x^3 y^4)^(1/3) and how did you get this result?
......!!!!!!!!...................................
RESPONSE --> (x^2 y)^(1/3) * (125 x^3)^(1/3) / ( 8 x^3 y^4)^(1/3) (x^2)^(1/3) (y)^(1/3) * 5x / (8)^(1/3) * xy(y^(1/3)) x^(2/3)*y^(1/3) * 5x / 2xy*y^(1/3) x^(2/3)* 5x / 2xy x^(2/3)* 5 / 2y
.................................................
......!!!!!!!!...................................
19:51:53 ** (x^2y)^(1/3) * (125x^3)^(1/3)/ ( 8 x^3y^4)^(1/3) (x^(2/3)y^(1/3)* (5x)/[ 8^(1/3) * xy(y^(1/3)] (x^(2/3)(5x) / ( 2 xy) 5( x^(5/3)) / ( 2 xy) 5x(x^(2/3)) / ( 2 xy) 5 ( x^(2/3) ) / (2 y) **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
19:59:01 Extra Question: What is the simplified form of 2 sqrt(12) - 3 sqrt(27) and how did you get this result?
......!!!!!!!!...................................
RESPONSE --> 2 sqrt(12) - 3 sqrt(27) 2 * sqrt(4) * sqrt(3) - 3 * sqrt(9) * sqrt(3) 2 * 2 *sqrt(3) - 3 * 3 * sqrt(3) 4 * sqrt(3) - 9 * sqrt(3)
.................................................
......!!!!!!!!...................................
19:59:13 ** 2* sqrt(12) - 3*sqrt(27) can be written as 2* sqrt (4*3) - 3 * sqrt (9*3) by factoring out the maximum possible perfect square in each square root. This simplifies to 2* sqrt (4) sqrt(3) - 3 * sqrt (9) sqrt(3) = 2*2 sqrt 3 - 3*3 * sqrt 3 = } 4*sqrt3 - 9 * sqrt3 = -5sqrt3. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:12:21 Extra Question: What is the simplified form of (2 sqrt(6) + 3) ( 3 sqrt(6)) and how did you get this result?
......!!!!!!!!...................................
RESPONSE --> (2 sqrt(6) + 3) ( 3 sqrt(6)) 2 sqrt(6) * 3 sqrt(6) + 3(3 sqrt(6)) 2 * 3 * (sqrt6)^2 + 9 sqrt(6) 6 * 6 + 9 sqrt(6) 36 + 9 sqrt(6)
.................................................
......!!!!!!!!...................................
20:12:35 ** (2*sqrt(6) +3)(3*sqrt(6)) expands by the Distributive Law to give (2*sqrt(6) * 3sqrt(6) + 3*3sqrt(6)), which we rewrite as (2*3)(sqrt6*sqrt6) + 9 sqrt(6) = (6*6) + 9sqrt(6) = 36 +9sqrt(6). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:16:01 Query R.8.42. What do you get when you rationalize the denominator of 3 / sqrt(2) and what steps did you follow to get this result?
......!!!!!!!!...................................
RESPONSE --> 3 / sqrt(2) 3 * sqrt(2) / sqrt(2) * sqrt(2) 3 * sqrt(2) / 2
.................................................
......!!!!!!!!...................................
20:16:15 ** Starting with 3/sqrt(2) we multiply numerator and denominator by sqrt(2) to get (2*sqrt(2))/(sqrt(2)*sqrt(2)) = (3 sqrt(2) ) /2.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:24:12 Query R.8.46. What do you get when you rationalize the denominator of sqrt(3) / (sqrt(7) - sqrt(2) ) and what steps did you follow to get this result?
......!!!!!!!!...................................
RESPONSE --> sqrt(3) / (sqrt(7) - sqrt(2) ) sqrt(3) * sqrt(7) + 2 / sqrt(7)-2 * sqrt(7)+2 sqrt(3) * sqrt(7) + 2 / 7 - 4 sqrt(3) * sqrt(7) + 2 / 3
.................................................
......!!!!!!!!...................................
20:24:17 ** Starting with sqrt(3)/(sqrt(7)-sqrt2) multiply both numerator and denominator by sqrt(7) + 2 to get (sqrt(3)* (sqrt(7) + 2))/ (sqrt(7) - 2)(sqrt(7) + 2). Since (a-b)(a+b) = a^2 - b^2 the denominator is (sqrt(7)+2 ) ( sqrt(7) - 2 ) = sqrt(7)^2 - 2^2 = 7 - 4 = 3 so we have sqrt(3) (sqrt(7) + 2) / 3.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:30:15 Extra Question: What steps did you follow to simplify (-8)^(-5/3) and what is your result?
......!!!!!!!!...................................
RESPONSE --> (-8)^(-5/3) -2^ -5 1/-2^5 = -1/32
.................................................
......!!!!!!!!...................................
20:30:22 ** (-8)^(-5/3) = [ (-8)^(1/3) ] ^-5. Since -8^(1/3) is -2 we get [-2]^-5 = 1 / (-2)^5 = -1/32. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:33:44 query R.8.64. What steps did you follow to simplify (8/27)^(-2/3) and what is your result?
......!!!!!!!!...................................
RESPONSE --> (8/27)^(-2/3) 27^(2/3) / 8^(2/3) (3^3)^(2/3) / (2^3)^(2/3) 3^(6/3) / 2^(6/3) 3^2 / 2^2 9 / 4
.................................................
......!!!!!!!!...................................
20:34:17 ** Starting with (8/27)^(-2/3) we can write as (8^(-2/3)/27^(-2/3)). Writing with positive exponents this becomes (27^(2/3)/8^(2/3)) 27^(2/3) = [ 27^(1/3) ] ^2 = 3^2 = 9 and 8^(2/3) = [ 8^(1/3) ] ^2 = 2^2 = 4 so the result is (27^(2/3)/8^(2/3)) = 9/4. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:36:36 Extra Question: What steps did you follow to simplify 6^(5/4) / 6^(1/4) and what is your result?
......!!!!!!!!...................................
RESPONSE --> 6^(5/4) / 6^(1/4) 6^(5/4 - 1/4) 6^(4/4) = 6^1 = 6
.................................................
......!!!!!!!!...................................
20:36:40 ** Use the laws of exponents (mostly x^a / x^b = x^(a-b) as follows: 6^(5/4) / 6^(1/4) = 6^(5/4 - 1/4) = 6^1 = 6. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:39:05 Extra Question: What steps did you follow to simplify (x^3)^(1/6) and what is your result, assuming that x is positive and expressing your result with only positive exponents?
......!!!!!!!!...................................
RESPONSE --> (x^3)^(1/6) x^(3 * 1/6) x^(3/6) x^(1/2)
.................................................
......!!!!!!!!...................................
20:39:13 ** Express radicals as exponents and use the laws of exponents. (x^3)^(1/6) = x^(3 * 1/6) = x^(1/2). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:53:33 Extra Question: What steps did you follow to simplify (x^(1/2) / y^2) ^ 4 * (y^(1/3) / x^(-2/3) ) ^ 3 and what is your result, assuming that x is positive and expressing your result with only positive exponents?
......!!!!!!!!...................................
RESPONSE --> (x^(1/2) / y^2) ^ 4 * (y^(1/3) / x^(-2/3) ) ^ 3 (x^(1/2*4) / y^(2*4) * (y^(3/3) / x^(-6/3) ) (x^(2) / y^(8)) * (y / x^(-2)) x^2 * y * x^2 / y^8 x^4 / y^7
.................................................
......!!!!!!!!...................................
20:53:37 ** (x^(1/2) / y^2) ^ 4 * (y^(1/3) / x^(-2/3) ) ^ 3 = x^(1/2 * 4) / y^(2* 4) * y^(1/3 * 3) / x^(-2/3 * 3)= x^2 / y^8 * y / x^(-2) = x^2 * x^2 / y^7 = x^4 / y^7. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:54:35 query R.8.96. Factor 8 x^(1/3) - 4 x^(-2/3), x <> 0.
......!!!!!!!!...................................
RESPONSE --> 8 x^(1/3) - 4 x^(-2/3) = 8 x^(1/3) - 4 / x^(2/3)
.................................................
......!!!!!!!!...................................
20:54:42 ** To factor 8x^(1/3)- 4x^(-2/3) we first need to write the expression without negative exponents. To accomplish this we multiply through by x^(2/3) / x^(2/3), obtaining (8 x^(1/3 + 2/3) - 4x^(-2/3 + 2/3) / x^(2/3) = (8 x - 4) / x^(2/3). We then factor 2 out of the numerator to obtain 4 ( 2x - 1) / x^(2/3). Other correct forms include: ( 4x^(1/3) ) ( 2 - ( 1/x) ) 8 x^(1/3) - 4 / x^(2/3). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:55:05 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> none
................................................."