units of volume

course Phy 232

6/3 5:10

Question: `q001. There are 10 questions and 5 summary questions in this assignment.

How many cubic centimeters of fluid would require to fill a cubic container 10 cm on a side?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10 cm* 10cm * 10cm =1000 cm^3

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe volume of the container is 10 cm * 10 cm * 10 cm = 1000 cm^3. So it would take 1000 cubic centimeters of fluid to fill the container.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q002. How many cubes each 10 cm on a side would it take to build a solid cube one meter on a side?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

100cm*100cm*100cm = 1000000 cm^3

10 cm* 10cm * 10cm =1000 cm^3

1000000 cm^3 / 1000 cm^3 = 1000 cubes

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIt takes ten 10 cm cubes laid side by side to make a row 1 meter long or a tower 1 meter high. It should therefore be clear that the large cube could be built using 10 layers, each consisting of 10 rows of 10 small cubes. This would require 10 * 10 * 10 = 1000 of the smaller cubes.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q003. How many square tiles each one meter on each side would it take to cover a square one km on the side?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1000 m* 1000m = 1000000 m^2

1000000 m^2 / 1m^2 = 1000000 tiles

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIt takes 1000 meters to make a kilometer (km). To cover a square 1 km on a side would take 1000 rows each with 1000 such tiles to cover 1 square km. It therefore would take 1000 * 1000 = 1,000,000 squares each 1 m on a side to cover a square one km on a side.

We can also calculate this formally. Since 1 km = 1000 meters, a square km is (1 km)^2 = (1000 m)^2 = 1,000,000 m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q004. How many cubic centimeters are there in a liter?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 l = 1000 cm^3

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aA liter is the volume of a cube 10 cm on a side. Such a cube has volume 10 cm * 10 cm * 10 cm = 1000 cm^3. There are thus 1000 cubic centimeters in a liter.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q005. How many liters are there in a cubic meter?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 m^3 * (100cm/1m)^3 = 1000000 cm^3

1000000 cm^3 / 1000cm^3 = 1000 liters

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aA liter is the volume of a cube 10 cm on a side. It would take 10 layers each of 10 rows each of 10 such cubes to fill a cube 1 meter on a side. There are thus 10 * 10 * 10 = 1000 liters in a cubic meter.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q006. How many cm^3 are there in a cubic meter?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 m^3 * (100cm/1m)^3 = 1000000 cm^3

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThere are 1000 cm^3 in a liter and 1000 liters in a m^3, so there are 1000 * 1000 = 1,000,000 cm^3 in a m^3.

It's important to understand the 'chain' of units in the previous problem, from cm^3 to liters to m^3. However another way to get the desired result is also important:

There are 100 cm in a meter, so 1 m^3 = (1 m)^3 = (100 cm)^3 = 1,000,000 cm^3.

STUDENT COMMENT

It took me a while to decipher this one out, but I finally connected the liters to cm^3 and m^3. I should have calculated it by just converting units, it would have been easier.

INSTRUCTOR RESPONSE

The point isn't just conversion. There are two points to understanding the picture. One is economy of memory: it's easier to remember the picture than the conversion factors, which can easily be confused. The other is conceptual/visual: the picture gives you a deeper understanding of the units.

In the long run it's easier to remember that a liter is a 10-cm cube, and a cubic meter is a 100-cm cube.

Once you get this image in your mind, it's obvious how 10 layers of 10 rows of 10 one-cm cubes forms a liter, and 10 layers of 10 rows of 10 one-liter cubes forms a cubic meter.

Once you understand this, rather than having a meaningless conversion number you have a picture that not only gives you the conversion, but can be used to visualize the meanings of the units and how they are applied to a variety of problems and situations.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q007. If a liter of water has a mass of 1 kg the what is the mass of a cubic meter of water?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 m^3 * (100cm/1m)^3 = 1000000 cm^3

1000000 cm^3 / 1000cm^3 = 1000 liters = 1000 kg

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since there are 1000 liters in a cubic meter, the mass of a cubic meter of water will be 1000 kg. This is a little over a ton.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q008. What is the mass of a cubic km of water?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 km^3 * (1000m/1km)^3 * (100cm/1m)^3 = 1000000000000000 cm^3

1000000000000000 cm^3 / 1000 cm^3 = 1000000000000 liters = 1000000000000 kg

confidence rating #$&* ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aA cubic meter of water has a mass of 1000 kg. A cubic km is (1000 m)^3 = 1,000,000,000 m^3, so a cubic km will have a mass of 1,000,000,000 m^3 * 1000 kg / m^3 = 1,000,000,000,000 kg.

In scientific notation we would say that 1 m^3 has a mass of 10^3 kg, a cubic km is (10^3 m)^3 = 10^9 m^3, so a cubic km has mass (10^9 m^3) * 1000 kg / m^3 = 10^12 kg.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q009. If each of 5 billion people drink two liters of water per day then how long would it take these people to drink a cubic km of water?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 km^3 * (1000m/1km)^3 * (100cm/1m)^3 = 1000000000000000 cm^3

1000000000000000 cm^3 / 1000 cm^3 = 1000000000000 liters

1000000000000 liters /(2*5000000000)l/day = 100 days

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a5 billion people drinking 2 liters per day would consume 10 billion, or 10,000,000,000, or 10^10 liters per day.

A cubic km is (10^3 m)^3 = 10^9 m^3 and each m^3 is 1000 liters, so a cubic km is 10^9 m^3 * 10^3 liters / m^3 = 10^12 liters, or 1,000,000,000,000 liters.

At 10^10 liters per day the time required to consume a cubic km would be

time to consume 1 km^3 = 10^12 liters / (10^10 liters / day) = 10^2 days, or 100 days.

This calculation could also be written out:

1,000,000,000,000 liters / (10,000,000,000 liters / day) = 100 days.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q010. The radius of the Earth is approximately 6400 kilometers. What is the surface area of the Earth? If the surface of the Earth was covered to a depth of 2 km with water that what would be the approximate volume of all this water?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4pi*6400^2 = 510000000 km^2

510000000 km^2 *2 km = 1020000000 km^3

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe surface area would be

A = 4 pi r^2 = 4 pi ( 6400 km)^2 = 510,000,000 km^2.

A flat area of 510,000,000 km^2 covered to a depth of 2 km would indicate a volume of

V = A * h = 510,000,000 km^2 * 2 km = 1,020,000,000 km^3.

However the Earth's surface is curved, not flat. The outside of the 2 km covering of water would have a radius 2 km greater than that of the Earth, and therefore a greater surface area. However a difference of 2 km in 6400 km will change the area by only a fraction of one percent, so the rounded result 1,020,000,000,000 km^3 would still be accurate.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q011. Summary Question 1: How can we visualize the number of cubic centimeters in a liter?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Liter is a cube 10 cm on each side. So it is (10cm)^3 = 1000 cm^3.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since a liter is a cube 10 cm on a side, we visualize 10 layers each of 10 rows each of 10 one-centimeter cubes, for a total of 1000 1-cm cubes. There are 1000 cubic cm in a liter.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q012. Summary Question 2: How can we visualize the number of liters in a cubic meter?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A cubic meter has sides the length of 10 of the 10 cm cubes. So it has 1000 total 10 cm cubes. Therefore having 1000 liters.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since a liter is a cube 10 cm on a side, we need 10 such cubes to span 1 meter. So we visualize 10 layers each of 10 rows each of 10 ten-centimeter cubes, for a total of 1000 10-cm cubes. Again each 10-cm cube is a liter, so there are 1000 liters in a cubic meter.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q013. Summary Question 3: How can we calculate the number of cubic centimeters in a cubic meter?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 m^3 * (100cm/1m)^3 = 1000000 cm^3

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aOne way is to know that there are 1000 liters in a cubic meters, and 1000 cubic centimeters in a cubic meter, giving us 1000 * 1000 = 1,000,000 cubic centimeters in a cubic meter. Another is to know that it takes 100 cm to make a meter, so that a cubic meter is (100 cm)^3 = 1,000,000 cm^3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q014. Summary Question 4: There are 1000 meters in a kilometer. So why aren't there 1000 cubic meters in a cubic kilometer? Or are there?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using dimensional analysis shows that there are not 1000 cubic meters in a cubic kilometer.

1 km^3 * (1000m/1km)^3 = 1000000000 m^3

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aA cubic kilometer is a cube 1000 meters on a side, which would require 1000 layers each of 1000 rows each of 1000 one-meter cubes to fill. So there are 1000 * 1000 * 1000 = 1,000,000,000 cubic meters in a cubic kilometer.

Alternatively, (1 km)^3 = (10^3 m)^3 = 10^9 m^3, not 1000 m^3.

STUDENT ANSWER to question:

Because a cubic kilometer is cubed. A regular kilometer is not going to contain as much as a cubic kilometer.

INSTRUCTOR RESPONSE

Kilometers and cubic kilometers don't measure the same sort of thing, so they can't be compared at all.

Kilometers measure distance, how far it is between two points.

Cubic kilometers measure volume, how much space there is inside of something (there is space, though not necessarily empty space, inside of any container or any 3-dimensional region, whether it's full of other stuff or not. If it's full of other stuff then we wouldn't say that it's 'empty space' or 'available space', but the amount of space inside is the same either way).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating #$&* ok

*********************************************

Question: `q015. Explain how you have organized your knowledge of the principles illustrated by the exercises in this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

"

&#Good work. Let me know if you have questions. &#

#$&*