Assignment 10 

course phy 122

assignment #010010. `Query 31

Physics II

06-23-2008

......!!!!!!!!...................................

12:52:55

Query Principles and General Physics 21.04. A circular loop of diameter 9.6 cm in a 1.10 T field perpendicular to the plane of the loop; loop is removed in .15 s. What is the induced EMF?

......!!!!!!!!...................................

RESPONSE -->

the magnetic flux would be found using this equation

flux= magnetic field * area

flux= 1.10 T * ( 3.14 * .048 m) ^2= .00796 T^2

im not sure what it would be when the loop is removed

.................................................

......!!!!!!!!...................................

12:53:41

The average induced emf is the average rate of change of the magnetic flux with respect to clock time. The initial magnetic flux through this loop is

flux = magnetic field * area = 1.10 T * (pi * .048 m)^2 = .00796 T m^2.

The flux is reduced to 0 when the loop is removed from the field, so the change in flux has magnitude .0080 T m^2. The rate of change of

......!!!!!!!!...................................

RESPONSE -->

I understnad that when the loop is removed, the flux is 0 and the change in flux has a magnitude of .0080 Tm^2 ..

.................................................

......!!!!!!!!...................................

12:54:36

flux is therefore .0080 T m^2 / (.15 sec) = .053 T m^2 / sec = .053 volts.

......!!!!!!!!...................................

RESPONSE -->

I also understand that you take the magnitude .0080 tm^2 / .15 sec to come up with .053 Tm^2= .053 volts

.................................................

......!!!!!!!!...................................

12:55:06

query gen problem 21.23 320-loop square coil 21 cm on a side, .65 T mag field. How fast to produce peak 120-v output?

How many cycles per second are required to produce a 120-volt output, and how did you get your result?

......!!!!!!!!...................................

RESPONSE -->

This problem is for general physics students

.................................................

......!!!!!!!!...................................

12:55:14

The average magnitude of the output is peak output/sqrt(2) . We find the average output as ave rate of flux change.

The area of a single coil is (21 cm)^2 = (.21 m)^2 and the magnetic field is .65 Tesla; there are 320 coils. When the plane of the coil is perpendicular to the field we get the maximum flux of

fluxMax = .65 T * (.21 m)^2 * 320 = 19.2 T m^2.

The flux will decrease to zero in 1/4 cycle. Letting t_cycle stand for the time of a complete cycle we have

ave magnitude of field = magnitude of change in flux / change in t = 9.17T m^2 / (1/4 t_cycle) = 36.7 T m^2 / t_cycle.

If peak output is 120 volts the ave voltage is 120 V / sqrt(2) so we have

36.7 T m^2 / t_cycle = 120 V / sqrt(2).

We easily solve for t_cycle to obtain t_cycle = 36.7 T m^2 / (120 V / sqrt(2) ) = .432 second.+

A purely symbolic solution uses

maximum flux = n * B * A

average voltage = V_peak / sqrt(2), where V_peak is the peak voltage

giving us

ave rate of change of flux = average voltage so that

n B * A / (1/4 t_cycle) = V_peak / sqrt(2), which we solve for t_cycle to get

t_cycle = 4 n B A * sqrt(2) / V_peak = 4 * 320 * .65 T * (.21 m)^2 * sqrt(2) / (120 V) = .432 second.

......!!!!!!!!...................................

RESPONSE -->

for gen physics students

.................................................

......!!!!!!!!...................................

12:55:28

univ query 29.54 (30.36 10th edition) univ upward current I in wire, increasing at rate di/dt. Loop of height L, vert sides at dist a and b from wire.

When the current is I what is the magnitude of B at distance r from the wire and what is the magnetic flux through a strip at this position having width `dr?

......!!!!!!!!...................................

RESPONSE -->

This problem is for university physics students

.................................................

......!!!!!!!!...................................

12:55:35

** The magnetic field due to the wire at distance r is 2 k ' I / r. The field is radial around the wire and so by the right-hand rule (thumb in direction of current, fingers point in direction of field) is downward into the page.

The area of the strip is L * `dr.

The magnetic flux thru the strip is therefore 2 k ' I / r * (L `dr).

The total magnetic field over a series of such strips partitioning the area is thus

sum(2 k ' I / r * L `dr, r from a to b).

Taking the limit as `dr -> 0 we get

}

integral (2 k ' I / r * L with respect to r, r from a to b).

Our antiderivative is 2 k ' I ln | r | * L; the definite integral therefore comes out to

flux = 2 k ' L ln | b / a | * I.

If I is changing then we have

rate of change of flux = 2 k ' L ln | b / a | * dI/dt.

This is the induced emf through a single turn.

You can easily substitute a = 12.0 cm = .12 m, b = 36.0 cm = .36 m, L = 24.0 cm = .24 m and di/dt = 9.60 A / s, and multiply by the number of turns. **

......!!!!!!!!...................................

RESPONSE -->

okay

.................................................

&#Your work looks very good. Let me know if you have any questions. &#