course phy 122 assignment #026026. `Query 15
......!!!!!!!!...................................
21:07:47 Principles of Physics and General College Physics Problem 23.08. How far from a concave mirror of radius 23.0 cm must an object be placed to form an image at infinity?
......!!!!!!!!...................................
RESPONSE --> I think you would find how far an object must be placed to form the image at infinity by .5*23 cm= 11.5 cm.
.................................................
......!!!!!!!!...................................
21:08:14 Recall that the focal distance of this mirror is the distance at which the reflections of rays parallel to the axis of the mirror will converge, and that the focal distance is half the radius of curvature. In this case the focal distance is therefore 1/2 * 23.0 cm = 11.5 cm. The image will be at infinity if rays emerging from the object are reflected parallel to the mirror. These rays would follow the same path, but in reverse direction, of parallel rays striking the mirror and being reflected to the focal point. So the object would have to be placed at the focal point, 11.5 cm from the mirror.
......!!!!!!!!...................................
RESPONSE --> I do understand that it is half the raidus of the curvature and thats why you mulitiplied it by half.
.................................................
......!!!!!!!!...................................
21:14:04 query gen phy problem 23.14 radius of curvature of 4.5 x lens held 2.2 cm from tooth
......!!!!!!!!...................................
RESPONSE --> im pretty sure that you would use the following equation 1/ image distance + 1/object distance= 1/ focal length so 1/image distance + 1/2.2 cm= 1/ 1.7 cm (which is half of the 4.5) you would then solve... 3.9 * image distance= 2.2 * 1.7 cm = 1 cm
.................................................
......!!!!!!!!...................................
21:16:33 ** if the lens was convex then its focal length would be negative, equal to half the radius. Thus we would have 1 / 2.2 cm + 1 / image distance = -1 / 1.7 cm. Multiplying by the common denominator 1.7 cm * image distance * 1.7 cm we would get 1.7 cm * image distance + 2.2 cm * 1.7 cm = - 2.2 cm * image distance. Thus -3.9 cm * image distance = - 2.2 cm * 1.7 cm. Solving would give us an image distance of about 1 cm. Since magnification is equal to image distance / object distance the magnitude of the magnification would be less than .5 and we would not have a 4.5 x magnification. We have the two equations 1 / image dist + 1 / obj dist = 1 / focal length and | image dist / obj dist | = magnification = 4.5, so the image distance would have to be either 4.5 * object distance = 4.5 * 2.2 cm = 9.9 cm or -9.9 cm. If image dist is 9.9 cm then we have 1 / 9.9 cm + 1 / 2.2 cm = 1/f. Mult by common denominator to get 2.2 cm * f + 9.9 cm * f = 2.2 cm * 9.9 cm so 12.1 cm * f = 21.8 cm^2 (approx) and f = 1.8 cm. This solution would give us a radius of curvature of 2 * 1.8 cm = 3.6 cm, since the focal distance is half the radius of curvature. This positive focal distance implies a concave lens, and the image distance being greater than the object distance the tooth will be more than the focal distance from the lens. For this solution we can see from a ray diagram that the image will be real and inverted. The positive image distance also implies the real image. The magnification is - image dist / obj dist = (-9.9 cm) / (2.2 cm) = - 4.5, with the negative implying the inverted image whereas we are looking for a +4.5 magnification. There is also a solution for the -9.9 m image distance. We eventually get 2.2 cm * f - 9.9 cm * f = 2.2 cm * (-9.9) cm so -7.7 cm * f = -21.8 cm^2 (approx) and f = 2.9 cm, approx. This solution would give us a radius of curvature of 2 * 2.0 cm = 5.8 cm, since the focal distance is half the radius of curvature. This positive focal distance also implies a concave lens, but this time the object is closer to the lens than the focal length. For this solution we can see from a ray diagram that the image will be virtual and upright. The negative image distance also implies the virtual image. The magnification is - image dist / obj dist = -(-9.9 cm) / (2.2 cm) = + 4.5 as required; note that the positive image distance implies an upright image. **
......!!!!!!!!...................................
RESPONSE --> i mostly understood this, and now i understand the magnification is equal to image distance/ object distance, so the magnifude of the magnification would be .5 and we would not have 4.5 * magnification. I also see how the image distance woudl have to be either 4.5 * 2.2 cm (object distance)= 9.9 cm
.................................................
......!!!!!!!!...................................
21:16:44 **** query univ phy problem 33.38 (34.28 10th edition) 3 mm plate, n = 1.5, in 3 cm separation between 450 nm source and screen. How many wavelengths are there between the source and the screen?
......!!!!!!!!...................................
RESPONSE --> this is a university problem...
.................................................
......!!!!!!!!...................................
21:16:47 ** The separation consists of 1.55 cm = 1.55 * 10^7 nm of air, index of refraction very close to 1, and 2.5 mm = 2.5 * 10^-6 nm of glass, index of refraction 1.4. The wavelength in the glass is 540 nm / 1.4 = 385 nm, approx.. So there are 1.55 * 10^7 nm / (540 nm/wavelength) = 2.27 * 10^4 wavelengths in the air and 2.5 * 10^-6 nm / (385 nm/wavelength) = 6.5 * 10^3 wavelengths in the glass. **
......!!!!!!!!...................................
RESPONSE --> okay
.................................................