course Mth 174

hello

assignment #002

002. Describing Graphs

qa initial problems

09-01-2008

......!!!!!!!!...................................

19:12:58

`q001. You will frequently need to describe the graphs you have constructed in this course. This exercise is designed to get you used to some of the terminology we use to describe graphs. Please complete this exercise and email your work to the instructor. Note that you should do these graphs on paper without using a calculator. None of the arithmetic involved here should require a calculator, and you should not require the graphing capabilities of your calculator to answer these questions.

Problem 1. We make a table for y = 2x + 7 as follows: We construct two columns, and label the first column 'x' and the second 'y'. Put the numbers -3, -2, -1, -, 1, 2, 3 in the 'x' column. We substitute -3 into the expression and get y = 2(-3) + 7 = 1. We substitute -2 and get y = 2(-2) + 7 = 3. Substituting the remaining numbers we get y values 5, 7, 9, 11 and 13. These numbers go into the second column, each next to the x value from which it was obtained. We then graph these points on a set of x-y coordinate axes. Noting that these points lie on a straight line, we then construct the line through the points.

Now make a table for and graph the function y = 3x - 4.

Identify the intercepts of the graph, i.e., the points where the graph goes through the x and the y axes.

......!!!!!!!!...................................

RESPONSE -->

x intercept=4/3

y intercept= -4

0=3x-4

y=3(0)-4

confidence assessment: 3

.................................................

......!!!!!!!!...................................

19:13:24

The graph goes through the x axis when y = 0 and through the y axis when x = 0.

The x-intercept is therefore when 0 = 3x - 4, so 4 = 3x and x = 4/3.

The y-intercept is when y = 3 * 0 - 4 = -4. Thus the x intercept is at (4/3, 0) and the y intercept is at (0, -4).

Your graph should confirm this.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

......!!!!!!!!...................................

19:14:30

`q002. Does the steepness of the graph in the preceding exercise (of the function y = 3x - 4) change? If so describe how it changes.

......!!!!!!!!...................................

RESPONSE -->

No, the slope of the graph is 3. It will never change.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

19:14:40

The graph forms a straight line with no change in steepness.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

19:15:59

`q003. What is the slope of the graph of the preceding two exercises (the function ia y = 3x - 4;slope is rise / run between two points of the graph)?

......!!!!!!!!...................................

RESPONSE -->

3/1. For every three you move up, you move one right.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

19:16:14

Between any two points of the graph rise / run = 3.

For example, when x = 2 we have y = 3 * 2 - 4 = 2 and when x = 8 we have y = 3 * 8 - 4 = 20. Between these points the rise is 20 - 2 = 18 and the run is 8 - 2 = 6 so the slope is rise / run = 18 / 6 = 3.

Note that 3 is the coefficient of x in y = 3x - 4.

Note the following for reference in subsequent problems: The graph of this function is a straight line. The graph increases as we move from left to right. We therefore say that the graph is increasing, and that it is increasing at constant rate because the steepness of a straight line doesn't change.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

19:18:56

`q004. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

Increasing. Yes, it gets steeper.Increasing at an increasing rate.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

19:19:24

Graph points include (0,0), (1,1), (2,4) and (3,9). The y values are 0, 1, 4 and 9, which increase as we move from left to right.

The increases between these points are 1, 3 and 5, so the graph not only increases, it increases at an increasing rate

STUDENT QUESTION: I understand increasing...im just not sure at what rate...how do you determine increasing at an increasing rate or a constant rate?

INSTRUCTOR RESPONSE: Does the y value increase by the same amount, by a greater amount or by a lesser amount every time x increases by 1?

In this case the increases get greater and greater. So the graph increases, and at an increasing rate. *&*&.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

19:21:52

`q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

Points Include= (0,0), (-1,1), (-2,4), (-3,9)

Decreasing. Steepness deacreases as it goes down. Decreasing at a decreasing rate.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

19:22:17

From left to right the graph is decreasing (points (-3,9), (-2,4), (-1,1), (0,0) show y values 9, 4, 1, 0 as we move from left to right ). The magnitudes of the changes in x from 9 to 4 to 1 to 0 decrease, so the steepness is decreasing.

Thus the graph is decreasing, but more and more slowly. We therefore say that the graph is decreasing at a decreasing rate.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

19:25:13

`q006. Make a table of y vs. x for y = `sqrt(x). [note: `sqrt(x) means 'the square root of x']. Graph y = `sqrt(x) between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

Increasing. The graph gets less steep the farther you go out. Increasing at a decreasing rate.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

19:26:05

If you use x values 0, 1, 2, 3, 4 you will obtain graph points (0,0), (1,1), (2,1.414), (3. 1.732), (4,2). The y value changes by less and less for every succeeding x value. Thus the steepness of the graph is decreasing.

The graph would be increasing at a decreasing rate.

If the graph respresents the profile of a hill, the hill starts out very steep but gets easier and easier to climb. You are still climbing but you go up by less with each step, so the rate of increase is decreasing.

If your graph doesn't look like this then you probably are not using a consistent scale for at least one of the axes. If your graph isn't as desribed take another look at your plot and make a note in your response indicating any difficulties.

......!!!!!!!!...................................

RESPONSE -->

Remember to include values.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

19:33:10

`q007. Make a table of y vs. x for y = 5 * 2^(-x). Graph y = 5 * 2^(-x) between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

Points Include= (0,5), (1,2.5), (2,1.25), (3,.625)

Deacresing. It becomes less steep. Deacreasing at a decreasing rate.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

19:33:37

** From basic algebra recall that a^(-b) = 1 / (a^b).

So, for example:

2^-2 = 1 / (2^2) = 1/4, so 5 * 2^-2 = 5 * 1/4 = 5/4.

5* 2^-3 = 5 * (1 / 2^3) = 5 * 1/8 = 5/8. Etc.

The decimal equivalents of the values for x = 0 to x = 3 will be 5, 2.5, 1.25, .625. These values decrease, but by less and less each time.

The graph is therefore decreasing at a decreasing rate. **

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

19:34:34

`q008. Suppose you stand still in front of a driveway. A car starts out next to you and moves away from you, traveling faster and faster.

If y represents the distance from you to the car and t represents the time in seconds since the car started out, would a graph of y vs. t be increasing or decreasing?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

Increasing. Increasing at an increasing rate

confidence assessment: 3

.................................................

......!!!!!!!!...................................

19:34:50

** The speed of the car increases so it goes further each second. On a graph of distance vs. clock time there would be a greater change in distance with each second, which would cause a greater slope with each subsequent second. The graph would therefore be increasing at an increasing rate. **

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

Cٷ|`x~θoiwN쨤

assignment #003

003. PC1 questions

qa initial problems

09-01-2008

]z…amdͲ

assignment #001

001. typewriter notation

qa initial problems

09-01-2008

CzNj~L׍ڌ

assignment #003

003. PC1 questions

qa initial problems

09-01-2008

......!!!!!!!!...................................

21:23:00

`q001 A straight line connects the points (3, 5) and (7, 17), while another straight line continues on from (7, 17) to the point (10, 29). Which line is steeper and on what basis to you claim your result?

......!!!!!!!!...................................

RESPONSE -->

The line connecting (7,17) to (10,29). I found the slope of each line. (17-5)/(7-3)= 3. (29-17)/(10-7)=4.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

21:23:18

The point (3,5) has x coordinate 3 and y coordinate 5. The point (7, 17) has x coordinate 7 and y coordinate 17. To move from (3,5) to (7, 17) we must therefore move 4 units in the x direction and 12 units in the y direction.

Thus between (3,5) and (7,17) the rise is 12 and the run is 4, so the rise/run ratio is 12/4 = 3.

Between (7,10) and (10,29) the rise is also 12 but the run is only 3--same rise for less run, therefore more slope. The rise/run ratio here is 12/3 = 4.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

21:25:53

`q002. The expression (x-2) * (2x+5) is zero when x = 2 and when x = -2.5. Without using a calculator verify this, and explain why these two values of x, and only these two values of x, can make the expression zero.

......!!!!!!!!...................................

RESPONSE -->

Because you will be multiplying the contents of the 2 parenthesis. If either one equals zero, the answer to the expression will equal zero. They are the only 2 that what plugged in for x make either of the parenthesis 0.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

21:26:24

If x = 2 then x-2 = 2 - 2 = 0, which makes the product (x -2) * (2x + 5) zero.

If x = -2.5 then 2x + 5 = 2 (-2.5) + 5 = -5 + 5 = 0.which makes the product (x -2) * (2x + 5) zero.

The only way to product (x-2)(2x+5) can be zero is if either (x -2) or (2x + 5) is zero.

Note that (x-2)(2x+5) can be expanded using the Distributive Law to get

x(2x+5) - 2(2x+5). Then again using the distributive law we get

2x^2 + 5x - 4x - 10 which simplifies to

2x^2 + x - 10.

However this doesn't help us find the x values which make the expression zero. We are better off to look at the factored form.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

21:29:48

`q003. For what x values will the expression (3x - 6) * (x + 4) * (x^2 - 4) be zero?

......!!!!!!!!...................................

RESPONSE -->

-4,-2,2. (3(2)-6)=0, ((-4)+4)=0, ((-2)^2-4)=0, ((2)^2-4)=0

confidence assessment: 3

.................................................

......!!!!!!!!...................................

21:30:36

In order for the expression to be zero we must have 3x-6 = 0 or x+4=0 or x^2-4=0.

3x-6 = 0 is rearranged to 3x = 6 then to x = 6 / 3 = 2. So when x=2, 3x-6 = 0 and the entire product (3x - 6) * (x + 4) * (x^2 - 4) must be zero.

x+4 = 0 gives us x = -4. So when x=-4, x+4 = 0 and the entire product (3x - 6) * (x + 4) * (x^2 - 4) must be zero.

x^2-4 = 0 is rearranged to x^2 = 4 which has solutions x = + - `sqrt(4) or + - 2. So when x=2 or when x = -2, x^2 - 4 = 0 and the entire product (3x - 6) * (x + 4) * (x^2 - 4) must be zero.

We therefore see that (3x - 6) * (x + 4) * (x^2 - 4) = 0 when x = 2, or -4, or -2. These are the only values of x which can yield zero.**

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

21:34:04

`q004. One straight line segment connects the points (3,5) and (7,9) while another connects the points (10,2) and (50,4). From each of the four points a line segment is drawn directly down to the x axis, forming two trapezoids. Which trapezoid has the greater area? Try to justify your answer with something more precise than, for example, 'from a sketch I can see that this one is much bigger so it must have the greater area'.

......!!!!!!!!...................................

RESPONSE -->

(10,2)&(50,4)

confidence assessment: 1

.................................................

......!!!!!!!!...................................

21:35:06

Your sketch should show that while the first trapezoid averages a little more than double the altitude of the second, the second is clearly much more than twice as wide and hence has the greater area.

To justify this a little more precisely, the first trapezoid, which runs from x = 3 to x = 7, is 4 units wide while the second runs from x = 10 and to x = 50 and hence has a width of 40 units. The altitudes of the first trapezoid are 5 and 9,so the average altitude of the first is 7. The average altitude of the second is the average of the altitudes 2 and 4, or 3. So the first trapezoid is over twice as high, on the average, as the first. However the second is 10 times as wide, so the second trapezoid must have the greater area.

This is all the reasoning we need to answer the question. We could of course multiply average altitude by width for each trapezoid, obtaining area 7 * 4 = 28 for the first and 3 * 40 = 120 for the second. However if all we need to know is which trapezoid has a greater area, we need not bother with this step.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

21:56:58

* `q005. Sketch graphs of y = x^2, y = 1/x and y = `sqrt(x) [note: `sqrt(x) means 'the square root of x'] for x > 0. We say that a graph increases if it gets higher as we move toward the right, and if a graph is increasing it has a positive slope. Explain which of the following descriptions is correct for each graph:

As we move from left to right the graph increases as its slope increases.

As we move from left to right the graph decreases as its slope increases.

As we move from left to right the graph increases as its slope decreases.

As we move from left to right the graph decreases as its slope decreases.

......!!!!!!!!...................................

RESPONSE -->

y=x^2, graph increases as its slope increases.

y=1/x, graph decreases as its slope decreases.

y=`sqrt(x), graph increases as slope decreases

self critique assessment: 3

.................................................

......!!!!!!!!...................................

21:57:23

For x = 1, 2, 3, 4:

The function y = x^2 takes values 1, 4, 9 and 16, increasing more and more for each unit increase in x. This graph therefore increases, as you say, but at an increasing rate.

The function y = 1/x takes values 1, 1/2, 1/3 and 1/4, with decimal equivalents 1, .5, .33..., and .25. These values are decreasing, but less and less each time. The decreasing values ensure that the slopes are negative. However, the more gradual the decrease the closer the slope is to zero. The slopes are therefore negative numbers which approach zero.

Negative numbers which approach zero are increasing. So the slopes are increasing, and we say that the graph decreases as the slope increases.

We could also say that the graph decreases but by less and less each time. So the graph is decreasing at a decreasing rate.

For y = `sqrt(x) we get approximate values 1, 1.414, 1.732 and 2. This graph increases but at a decreasing rate.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:05:15

`q006. If the population of the frogs in your frog pond increased by 10% each month, starting with an initial population of 20 frogs, then how many frogs would you have at the end of each of the first three months (you can count fractional frogs, even if it doesn't appear to you to make sense)? Can you think of a strategy that would allow you to calculate the number of frogs after 300 months (according to this model, which probably wouldn't be valid for that long) without having to do at least 300 calculations?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

22:13:12

At the end of the first month, the number of frogs in the pond would be (20 * .1) + 20 = 22 frogs. At the end of the second month there would be (22 * .1) + 22 = 24.2 frogs while at the end of the third month there would be (24.2 * .1) + 24.2 = 26.62 frogs.

The key to extending the strategy is to notice that multiplying a number by .1 and adding it to the number is really the same as simply multiplying the number by 1.1. 10 * 1.1 = 22; 22 * 1.1 = 24.2; etc.. So after 300 months you will have multiplied by 1.1 a total of 300 times. This would give you 20 * 1.1^300, whatever that equals (a calculator will easily do the arithmetic).

A common error is to say that 300 months at 10% per month gives 3,000 percent, so there would be 30 * 20 = 600 frogs after 30 months. That doesn't work because the 10% increase is applied to a greater number of frogs each time. 3000% would just be applied to the initial number, so it doesn't give a big enough answer.

......!!!!!!!!...................................

RESPONSE -->

I had the answer I just messed up. I first 1.1*20=22*1.1=24.2*1.1=26.62. I tried to do 300 month by making the number of months x and the number of frogs y, using the numbers I had already calculated. I then entered them in my calculator plot them and did a quadratic regression and got 10481. Im not sure if it was closer to exponential or quadratic

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:18:38

`q007. Calculate 1/x for x = 1, .1, .01 and .001. Describe the pattern you obtain. Why do we say that the values of x are approaching zero? What numbers might we use for x to continue approaching zero? What happens to the values of 1/x as we continue to approach zero? What do you think the graph of y = 1/x vs. x looks for x values between 0 and 1?

......!!!!!!!!...................................

RESPONSE -->

y=1/1=1, y=1/.1=10, y=1/.01=100, y=1/.001=1000. The higher the x gets the lower the y gets. They get larger. Between 1 and 0 the 1/x values are much higher.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:19:19

If x = .1, for example, 1 / x = 1 / .1 = 10 (note that .1 goes into 1 ten times, since we can count to 1 by .1, getting.1, .2, .3, .4, ... .9, 10. This makes it clear that it takes ten .1's to make 1.

So if x = .01, 1/x = 100 Ithink again of counting to 1, this time by .01). If x = .001 then 1/x = 1000, etc..

Note also that we cannot find a number which is equal to 1 / 0. Deceive why this is true, try counting to 1 by 0's. You can count as long as you want and you'll ever get anywhere.

The values of 1/x don't just increase, they increase without bound. If we think of x approaching 0 through the values .1, .01, .001, .0001, ..., there is no limit to how big the reciprocals 10, 100, 1000, 10000 etc. can become.

The graph becomes steeper and steeper as it approaches the y axis, continuing to do so without bound but never touching the y axis.

This is what it means to say that the y axis is a vertical asymptote for the graph .

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:23:56

......!!!!!!!!...................................

RESPONSE -->

460800. First plug in the value of t. v=3(5)+9=24. Then plug in th value of v, E=800(24)^2=460800

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:24:11

For t=5, v = 3 t + 9 = (3*5) + 9 = 24. Therefore E = 800 * 24^2 = 460800.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:24:19

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 0

.................................................

......!!!!!!!!...................................

22:26:05

* `q009. Continuing the preceding problem, can you give an expression for E in terms of t?

......!!!!!!!!...................................

RESPONSE -->

Yes.E=800(3t+9)^2

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:26:17

Since v = 3 t + 9 the expression would be E = 800 v^2 = 800 ( 3t + 9) ^2. This is the only answer really required here.

For further reference, though, note that this expression could also be expanded by applying the Distributive Law:.

Since (3t + 9 ) ^ 2 = (3 t + 9 ) * ( 3 t + 9 ) = 3t ( 3t + 9 ) + 9 * (3 t + 9) = 9 t^2 + 27 t + 27 t + 81 = 9 t^2 + 54 t + 81, we get

E = 800 ( 9 t^2 + 54 t + 81) = 7200 t^2 + 43320 t + 64800 (check my multiplication because I did that in my head, which isn't always reliable).

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

൭ړVF

assignment #001

001. Rates

qa rates

09-01-2008

......!!!!!!!!...................................

22:31:03

`q001. You should copy and paste these instructions to a word processor for reference. However you can always view them, as well as everything else that has appeared in this box, by clicking the 'Display Everything' button.

1. For the next question or answer, you click on 'Next Question / Answer' button above the box at top left until a question has been posed. Once a question has been posed you are to answer before you click again on this button.

2. Before clicking for an answer, type your best answer to the current question into the box to the right, then clip on the 'Enter Answer' button.

3. After entering your answer you will click on 'Next Question / Answer' to view the answer to the question. Do not tamper with the information displayed in the left-hand box.

4. If your answer was incorrect, incomplete or would otherwise require revision, you will enter a self-critique. If you learned something from the answer, you need to restate it in your own words in order to reinforce your learning. If there is something you feel you should note for future reference, you should make a note in your own words. Go to the response box (the right-hand box) and type in a self-critique and/or notes, as appropriate. Do not copy and paste anything from the left-hand box, since that information will be saved in any case.

5. If you wish to save your response to your Notes file you may choose to click on the 'Save As Notes' button rather than the 'Enter Answer' button. Doing so will save your work for your future reference. Your work will be saved in a Notes file in the c:\vhmthphy folder. The title of the Notes file will also include the name you gave when you started the program.

6. After clicking either the 'Enter Response' or the 'Save as Notes' button, click on 'Next Question / Answer' and proceed in a similar manner.

In the right-hand box briefly describe your understanding of these instructions, then click 'Enter Answer'.

......!!!!!!!!...................................

RESPONSE -->

Be sure to completely answer the question. I can save notes.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:31:16

Your answer has been noted. Enter 'ok' in the Response Box and click on Enter Response, then click on Next Question/Answer for the first real question.

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:32:26

`q002. Note that there are 10 questions in this assignment. The questions are of increasing difficulty--the first questions are fairly easy but later questions are very tricky. The main purposes of these exercises are to refine your thinking about rates, and to see how you process challenging information. Continue as far as you can until you are completely lost. Students who are prepared for the highest-level math courses might not ever get lost.

If you make $50 in 5 hr, then at what rate are you earning money?

......!!!!!!!!...................................

RESPONSE -->

$10/hr. $50/ 5 hrs= $10/hr

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:32:39

The rate at which you are earning money is the number of dollars per hour you are earning. You are earning money at the rate of 50 dollars / (5 hours) = 10 dollars / hour. It is very likely that you immediately came up with the $10 / hour because almosteveryone is familiar with the concept of the pay rate, the number of dollars per hour. Note carefully that the pay rate is found by dividing the quantity earned by the time required to earn it. Time rates in general are found by dividing an accumulated quantity by the time required to accumulate it.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 3

.................................................

wEŇZ

assignment #001

001. Areas

qa areas volumes misc

09-01-2008

......!!!!!!!!...................................

22:34:32

`q001. There are 11 questions and 7 summary questions in this assignment.

What is the area of a rectangle whose dimensions are 4 m by 3 meters.

......!!!!!!!!...................................

RESPONSE -->

12m. Area=Length*Width

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:34:53

09-01-2008 22:34:53

A 4 m by 3 m rectangle can be divided into 3 rows of 4 squares, each 1 meter on a side. This makes 3 * 4 = 12 such squares. Each 1 meter square has an area of 1 square meter, or 1 m^2. The total area of the rectangle is therefore 12 square meters, or 12 m^2.

The formula for the area of a rectangle is A = L * W, where L is the length and W the width of the rectangle. Applying this formula to the present problem we obtain area A = L * W = 4 m * 3 m = (4 * 3) ( m * m ) = 12 m^2.

Note the use of the unit m, standing for meters, in the entire calculation. Note that m * m = m^2.

......!!!!!!!!...................................

NOTES -------> Watch for proper units

.......................................................!!!!!!!!...................................

22:36:41

`q002. What is the area of a right triangle whose legs are 4.0 meters and 3.0 meters?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

22:37:45

A right triangle can be joined along its hypotenuse with another identical right triangle to form a rectangle. In this case the rectangle would have dimensions 4.0 meters by 3.0 meters, and would be divided by any diagonal into two identical right triangles with legs of 4.0 meters and 3.0 meters.

The rectangle will have area A = L * W = 4.0 m * 3.0 m = 12 m^2, as explained in the preceding problem. Each of the two right triangles, since they are identical, will therefore have half this area, or 1/2 * 12 m^2 = 6.0 m^2.

The formula for the area of a right triangle with base b and altitude h is A = 1/2 * b * h.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:38:58

`q003. What is the area of a parallelogram whose base is 5.0 meters and whose altitude is 2.0 meters?

......!!!!!!!!...................................

RESPONSE -->

10m^2.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:39:07

A parallelogram is easily rearranged into a rectangle by 'cutting off' the protruding end, turning that portion upside down and joining it to the other end. Hopefully you are familiar with this construction. In any case the resulting rectangle has sides equal to the base and the altitude so its area is A = b * h.

The present rectangle has area A = 5.0 m * 2.0 m = 10 m^2.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:41:51

`q004. What is the area of a triangle whose base is 5.0 cm and whose altitude is 2.0 cm?

......!!!!!!!!...................................

RESPONSE -->

5cm^2

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:42:01

It is possible to join any triangle with an identical copy of itself to construct a parallelogram whose base and altitude are equal to the base and altitude of the triangle. The area of the parallelogram is A = b * h, so the area of each of the two identical triangles formed by 'cutting' the parallelogram about the approriate diagonal is A = 1/2 * b * h. The area of the present triangle is therefore A = 1/2 * 5.0 cm * 2.0 cm = 1/2 * 10 cm^2 = 5.0 cm^2.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:42:30

`q005. What is the area of a trapezoid with a width of 4.0 km and average altitude of 5.0 km?

......!!!!!!!!...................................

RESPONSE -->

20km^2

confidence assessment: 2

.................................................

......!!!!!!!!...................................

22:42:40

Any trapezoid can be reconstructed to form a rectangle whose width is equal to that of the trapezoid and whose altitude is equal to the average of the two altitudes of the trapezoid. The area of the rectangle, and therefore the trapezoid, is therefore A = base * average altitude. In the present case this area is A = 4.0 km * 5.0 km = 20 km^2.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:45:23

The area is equal to the product of the width and the average altitude. Average altitude is (3 cm + 8 cm) / 2 = 5.5 cm so the area of the trapezoid is A = 4 cm * 5.5 cm = 22 cm^2.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:47:06

`q007. What is the area of a circle whose radius is 3.00 cm?

......!!!!!!!!...................................

RESPONSE -->

28.27cm^2. Area=pi*r^2

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:47:21

The area of a circle is A = pi * r^2, where r is the radius. Thus

A = pi * (3 cm)^2 = 9 pi cm^2.

Note that the units are cm^2, since the cm unit is part r, which is squared.

The expression 9 pi cm^2 is exact. Any decimal equivalent is an approximation. Using the 3-significant-figure approximation pi = 3.14 we find that the approximate area is A = 9 pi cm^2 = 9 * 3.14 cm^2 = 28.26 cm^2, which we round to 28.3 cm^2 to match the number of significant figures in the given radius.

Be careful not to confuse the formula A = pi r^2, which gives area in square units, with the formula C = 2 pi r for the circumference. The latter gives a result which is in units of radius, rather than square units. Area is measured in square units; if you get an answer which is not in square units this tips you off to the fact that you've made an error somewhere.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:48:17

`q008. What is the circumference of a circle whose radius is exactly 3 cm?

......!!!!!!!!...................................

RESPONSE -->

18.85cm. C=2 pi r

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:48:37

The circumference of this circle is

C = 2 pi r = 2 pi * 3 cm = 6 pi cm.

This is the exact area. An approximation to 3 significant figures is 6 * 3.14 cm = 18.84 cm.

Note that circumference is measured in the same units as radius, in this case cm, and not in cm^2. If your calculation gives you cm^2 then you know you've done something wrong.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:49:42

`q009. What is the area of a circle whose diameter is exactly 12 meters?

......!!!!!!!!...................................

RESPONSE -->

113m. Take half the diameter to get the radius.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:49:55

The area of a circle is A = pi r^2, where r is the radius. The radius of this circle is half the 12 m diameter, or 6 m. So the area is

A = pi ( 6 m )^2 = 36 pi m^2.

This result can be approximated to any desired accuracy by using a sufficient number of significant figures in our approximation of pi. For example using the 5-significant-figure approximation pi = 3.1416 we obtain A = 36 m^2 * 3.1416 = 113.09 m^2.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:52:54

`q010. What is the area of a circle whose circumference is 14 `pi meters?

......!!!!!!!!...................................

RESPONSE -->

15.48m^2. Put the circumfrence in the formula and solve for the radius. The use the area formula.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:54:32

We know that A = pi r^2. We can find the area if we know the radius r. We therefore attempt to use the given information to find r.

We know that circumference and radius are related by C = 2 pi r. Solving for r we obtain r = C / (2 pi). In this case we find that

r = 14 pi m / (2 pi) = (14/2) * (pi/pi) m = 7 * 1 m = 7 m.

We use this to find the area

A = pi * (7 m)^2 = 49 pi m^2.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:56:01

`q011. What is the radius of circle whose area is 78 square meters?

......!!!!!!!!...................................

RESPONSE -->

5. Use the area formula and solve for r

confidence assessment:

.................................................

......!!!!!!!!...................................

22:56:24

09-01-2008 22:56:24

Knowing that A = pi r^2 we solve for r. We first divide both sides by pi to obtain A / pi = r^2. We then reverse the sides and take the square root of both sides, obtaining r = sqrt( A / pi ).

Note that strictly speaking the solution to r^2 = A / pi is r = +-sqrt( A / pi ), meaning + sqrt( A / pi) or - sqrt(A / pi). However knowing that r and A are both positive quantities, we can reject the negative solution.

Now we substitute A = 78 m^2 to obtain

r = sqrt( 78 m^2 / pi) = sqrt(78 / pi) m.{}

Approximating this quantity to 2 significant figures we obtain r = 5.0 m.

......!!!!!!!!...................................

NOTES -------> Remember units

.......................................................!!!!!!!!...................................

22:56:42

`q012. Summary Question 1: How do we visualize the area of a rectangle?

......!!!!!!!!...................................

RESPONSE -->

Length * Width

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:56:53

09-01-2008 22:56:53

We visualize the rectangle being covered by rows of 1-unit squares. We multiply the number of squares in a row by the number of rows. So the area is A = L * W.

......!!!!!!!!...................................

NOTES -------> ok

.......................................................!!!!!!!!...................................

22:58:02

`q013. Summary Question 2: How do we visualize the area of a right triangle?

......!!!!!!!!...................................

RESPONSE -->

Viualize and identical triangle and connect the hypotenuses together to make a rectangle, and take half of that area

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:58:22

We visualize two identical right triangles being joined along their common hypotenuse to form a rectangle whose length is equal to the base of the triangle and whose width is equal to the altitude of the triangle. The area of the rectangle is b * h, so the area of each triangle is 1/2 * b * h.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:58:53

`q014. Summary Question 3: How do we calculate the area of a parallelogram?

......!!!!!!!!...................................

RESPONSE -->

Avg altitude * Base= Area

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:59:10

The area of a parallelogram is equal to the product of its base and its altitude. The altitude is measured perpendicular to the base.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:59:28

`q015. Summary Question 4: How do we calculate the area of a trapezoid?

......!!!!!!!!...................................

RESPONSE -->

A=L*W

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:59:37

We think of the trapezoid being oriented so that its two parallel sides are vertical, and we multiply the average altitude by the width.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:59:57

`q016. Summary Question 5: How do we calculate the area of a circle?

......!!!!!!!!...................................

RESPONSE -->

A=pi r^2

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:00:03

We use the formula A = pi r^2, where r is the radius of the circle.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:01:21

`q017. Summary Question 6: How do we calculate the circumference of a circle? How can we easily avoid confusing this formula with that for the area of the circle?

......!!!!!!!!...................................

RESPONSE -->

C=2 pi r. By remembering that the answer will not be ^2 for circumfrence

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:01:27

We use the formula C = 2 pi r. The formula for the area involves r^2, which will give us squared units of the radius. Circumference is not measured in squared units.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:02:13

`q018. Explain how you have organized your knowledge of the principles illustrated by the exercises in this assignment.

......!!!!!!!!...................................

RESPONSE -->

I already knew it. It is already imbedded in my brain.

confidence assessment: 3

.................................................

Ľ~檰

assignment #003

003. Misc: Surface Area, Pythagorean Theorem, Density

qa areas volumes misc

09-01-2008

......!!!!!!!!...................................

23:04:51

`q001. There are 10 questions and 5 summary questions in this assignment.

What is surface area of a rectangular solid whose dimensions are 3 meters by 4 meters by 6 meters?

......!!!!!!!!...................................

RESPONSE -->

72m^3. S.A. L*W*H

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:05:30

A rectangular solid has six faces (top, bottom, front, back, left side, right side if you're facing it). The pairs top and bottom, right and left sides, and front-back have identical areas. This solid therefore has two faces with each of the following dimensions: 3 m by 4 m, 3 m by 6 m and 4 m by 6 m, areas 12 m^2, 18 m^2 and 24 m^2. Total area is 2 * 12 m^2 + 2 * 18 m^2 + 2 * 24 m^2 = 108 m^2.

......!!!!!!!!...................................

RESPONSE -->

Take the area of each face and add them together for S.A.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:07:11

`q002. What is the surface area of the curved sides of a cylinder whose radius is five meters and whose altitude is 12 meters? If the cylinder is closed what is its total surface area?

......!!!!!!!!...................................

RESPONSE -->

942.5 m^2.

confidence assessment: 1

.................................................

......!!!!!!!!...................................

23:07:47

The circumference of this cylinder is 2 pi r = 2 pi * 5 m = 10 pi m. If the cylinder was cut by a straight line running up its curved face then unrolled it would form a rectangle whose length and width would be the altitude and the circumference. The area of the curved side is therefore

A = circumference * altitude = 10 pi m * 12 m = 120 pi m^2.

If the cylinder is closed then it has a top and a bottom, each a circle of radius 5 m with resulting area A = pi r^2 = pi * (5 m)^2 = 25 pi m^2. The total area would then be

total area = area of sides + 2 * area of base = 120 pi m^2 + 2 * 25 pi m^2 = 170 pi m^2.

......!!!!!!!!...................................

RESPONSE -->

I did area times altitude instead of circumfrence

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:08:29

`q003. What is surface area of a sphere of diameter three cm?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

23:10:18

The surface area of a sphere of radius r is A = 4 pi r^2. This sphere has radius 3 cm / 2, and therefore has surface area

A = 4 pi r^2 = 4 pi * (3/2 cm)^2 = 9 pi cm^2.

......!!!!!!!!...................................

RESPONSE -->

S.A sphere A- 4 pi r^2

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:12:00

`q004. What is hypotenuse of a right triangle whose legs are 5 meters and 9 meters?

......!!!!!!!!...................................

RESPONSE -->

10.3m. Pathagorean Therem

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:12:16

The Pythagorean Theorem says that the hypotenuse c of a right triangle with legs a and b satisfies the equation c^2 = a^2 + b^2. So, since all lengths are positive, we know that

c = sqrt(a^2 + b^2) = sqrt( (5 m)^2 + (9 m)^2 ) = sqrt( 25 m^2 + 81 m^2) = sqrt( 106 m^2 ) = 10.3 m, approx..

Note that this is not what we would get if we made the common error of assuming that sqrt(a^2 + b^2) = a + b; this would tell us that the hypotenuse is 14 m, which is emphatically not so. There is no justification whatsoever for applying a distributive law (like x * ( y + z) = x * y + x * z ) to the square root operator.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:13:40

`q005. If the hypotenuse of a right triangle has length 6 meters and one of its legs has length 4 meters what is the length of the other leg?

......!!!!!!!!...................................

RESPONSE -->

4.47m. Pathagoran Therem

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:13:58

If c is the hypotenuse and a and b the legs, we know by the Pythagorean Theorem that c^2 = a^2 + b^2, so that a^2 = c^2 - b^2. Knowing the hypotenuse c = 6 m and the side b = 4 m we therefore find the unknown leg:

a = sqrt( c^2 - b^2) = sqrt( (6 m)^2 - (4 m)^2 ) = sqrt(36 m^2 - 16 m^2) = sqrt(20 m^2) = sqrt(20) * sqrt(m^2) = 2 sqrt(5) m,

or approximately 4.4 m.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:16:17

`q006. If a rectangular solid made of a uniform, homogeneous material has dimensions 4 cm by 7 cm by 12 cm and if its mass is 700 grams then what is its density in grams per cubic cm?

......!!!!!!!!...................................

RESPONSE -->

2.08 g/cm^3. D=m/v. V=L*W*H

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:17:17

The volume of this solid is 4 cm * 7 cm * 12 cm = 336 cm^3.

Its density in grams per cm^3 is the number of grams in each cm^3. We find this quantity by dividing the number of grams by the number of cm^3. We find that

density = 700 grams / (336 cm^3) = 2.06 grams / cm^3.

Note that the solid was said to be uniform and homogeneous, meaning that it's all made of the same material, which is uniformly distributed. So each cm^3 does indeed have a mass of 2.06 grams. Had we not known that the material was uniform and homogeneous we could have said that the average density is 2.06 grams / cm^3, but not that the density is 2.06 grams / cm^3 (the object could be made of two separate substances, one with density less than 2.06 grams / cm^3 and the other with density greater than 2.06 g / cm^3, in appropriate proportions; neither substance would have density 2.06 g / cm^3, but the average density could be 2.06 g / cm^3).

......!!!!!!!!...................................

RESPONSE -->

I use the exact same quantities and I get 2.08

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:19:00

`q007. What is the mass of a sphere of radius 4 meters if its average density is 3,000 kg/cubic meter?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

23:19:56

09-01-2008 23:19:56

A average density of 3000 kg / cubic meter implies that, at least on the average, every cubic meter has a mass of 3000 kg. So to find the mass of the sphere we multiply the number of cubic meters by 3000 kg.

The volume of a sphere of radius 4 meters is 4/3 pi r^3 = 4/3 * pi (4m)^3 = 256/3 * pi m^3. So the mass of this sphere is

mass = density * volume = 256 / 3 * pi m^3 * 3000 kg / m^3 = 256,000 * pi kg.

This result can be approximated to an appropriate number of significant figures.

......!!!!!!!!...................................

NOTES -------> I need to go over the volume of a spere

.......................................................!!!!!!!!...................................

23:21:02

`q008. If we build a an object out of two pieces of material, one having a volume of 6 cm^3 at a density of 4 grams per cm^3 and another with a volume of 10 cm^3 at a density of 2 grams per cm^3 then what is the average density of this object?

......!!!!!!!!...................................

RESPONSE -->

4g/cm^3. Average of the 2 densities

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:21:55

The first piece has a mass of 4 grams / cm^3 * 6 cm^3 = 24 grams. The second has a mass of 2 grams / cm^3 * 10 cm^3 = 20 grams. So the total mass is 24 grams + 20 grams = 44 grams.

The average density of this object is

average density = total mass / total volume = (24 grams + 20 grams) / (6 cm^3 + 10 cm^3) = 44 grams / (16 cm^3) = 2.75 grams / cm^3.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 2

.................................................

......!!!!!!!!...................................

23:24:51

`q009. In a large box of dimension 2 meters by 3 meters by 5 meters we place 27 cubic meters of sand whose density is 2100 kg/cubic meter, surrounding a total of three cubic meters of cannon balls whose density is 8,000 kg per cubic meter. What is the average density of the material in the box?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

23:31:10

We find the average density from the total mass and the total volume. The mass of the sand is 27 m^3 * 2100 kg / m^3 = 56,700 kg. The mass of the cannonballs is 3 m^3 * 8,000 kg / m^3 = 24,000 kg.

The average density is therefore

average density = total mass / total volume = (56,700 kg + 24,000 kg) / (27 m^3 + 3 m^3) = 80,700 kg / (30 m^3) = 2,700 kg / m^3, approx..

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:35:52

`q010. How many cubic meters of oil are there in an oil slick which covers 1,700,000 square meters (between 1/2 and 1 square mile) to an average depth of .015 meters? If the density of the oil is 860 kg/cubic meter the what is the mass of the oil slick?

......!!!!!!!!...................................

RESPONSE -->

V=25500 m^3. M= 21930000 kg/m^3. V=1700000m^2. M=VD

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:36:06

The volume of the slick is V = A * h, where A is the area of the slick and h the thickness. This is the same principle used to find the volume of a cylinder or a rectangular solid. We see that the volume is

V = A * h = 1,700,000 m^2 * .015 m = 25,500 m^3.

The mass of the slick is therefore

mass = density * volume = 860 kg / m^3 * 24,400 m^3 = 2,193,000 kg.

This result should be rounded according to the number of significant figures in the given information.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:36:37

`q011. Summary Question 1: How do we find the surface area of a cylinder?

......!!!!!!!!...................................

RESPONSE -->

Circumfrence * Altitude

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:37:02

The curved surface of the cylinder can be 'unrolled' to form a rectangle whose dimensions are equal to the circumference and the altitude of the cylinder, so the curved surface has volume

Acurved = circumference * altitude = 2 pi r * h, where r is the radius and h the altitude.

The top and bottom of the cylinder are both circles of radius r, each with resulting area pi r^2.

{]The total surface area is therefore

Acylinder = 2 pi r h + 2 pi r^2.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:37:16

`q012. Summary Question 2: What is the formula for the surface area of a sphere?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:37:23

09-01-2008 23:37:23

The surface area of a sphere is

A = 4 pi r^2,

where r is the radius of the sphere.

......!!!!!!!!...................................

NOTES ------->

.......................................................!!!!!!!!...................................

23:37:58

`q013. Summary Question 3: What is the meaning of the term 'density'.

......!!!!!!!!...................................

RESPONSE -->

Amount of a substance per unit volume

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:38:10

The average density of an object is its mass per unit of volume, calculated by dividing its total mass by its total volume. If the object is uniform and homogeneous then its density is constant and we can speak of its 'density' as opposed to its 'average density'

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:38:49

`q014. Summary Question 4: If we know average density and mass, how can we find volume?

......!!!!!!!!...................................

RESPONSE -->

Average density = total volume/ total mass

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:38:59

Since mass = ave density * volume, it follows by simple algebra that volume = mass / ave density.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:39:23

`q015. Explain how you have organized your knowledge of the principles illustrated by the exercises in this assignment.

......!!!!!!!!...................................

RESPONSE -->

I have saved the formulas that I didnt already know.

confidence assessment: 3

.................................................

&#Your work looks very good. Let me know if you have any questions. &#