#$&* course Phy 122 If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm
.............................................
Given Solution: Bernoulli's Equation can be written 1/2 rho v1^2 + rho g y1 + P1 = 1/2 rho v2^2 + rho g y2 + P2 If altitude is constant then y1 = y2, so that rho g y1 is the same as rho g y2. Subtracting this quantity from both sides, these terms disappear, leaving us 1/2 rho v1^2 + P1 = 1/2 rho v2^2 + P2. The difference in pressure is P2 - P1. If we subtract P1 from both sides, as well as 1/2 rho v2^2, we get 1/2 rho v1^2 - 1/2 rho v2^2 = P2 - P1. Thus change in pressure = P2 - P1 = 1/2 rho ( v1^2 - v2^2 ). Caution: (v1^2 - v2^2) is not the same as (v1 - v2)^2. Convince yourself of that by just picking two unequal and nonzero numbers for v1 and v2, and evaluating both sides. ALTERNATIVE FORMULATION Assuming constant rho, Bernoulli's Equation can be written 1/2 rho `d(v^2) + rho g `dy + `dP = 0. If altitude is constant, then `dy = 0 so that 1/2 rho `d(v^2) + `dP = 0 so that `dP = - 1/2 rho `d(v^2). Caution: `d(v^2) means change in v^2, not the square of the change in v. So `d(v^2) = v2^2 - v1^2, not (v2 - v1)^2. STUDENT SOLUTION: The equation for this situation is Bernoulli's Equation, which as you note is a modified KE+PE equation. Considering ideal conditions with no losses (rho*gy)+(0.5*rho*v^2)+(P) = 0 g= acceleration due to gravity y=altitude rho=density of fluid v=velocity P= pressure Constant altitude causes the first term to go to 0 and disappear. (0.5*rho*v^2)+(P) = constant So here is where we are: Since the altitude h is constant, the two quantities .5 rho v^2 and P are the only things that can change. The sum 1/2 `rho v^2 + P must remain constant. Since fluid velocity v changes, it therefore follows that P must change by a quantity equal and opposite to the change in 1/2 `rho v^2. MORE FORMAL SOLUTION: More formally we could write · 1/2 `rho v1^2 + P1 = 1/2 `rho v2^2 + P2 and rearrange to see that the change in pressure, P2 - P1, must be equal to the change 1/2 `rho v2^2 - 1/2 `rho v1^2 in .5 rho v^2: · P2 - P1 = 1/2 `rho v2^2 - 1/2 `rho v1^2 = 1/2 rho (v2^2 - v1^2). ** Your Self-Critique: ok Your Self-Critique Rating: ok ********************************************* Question: query billiard experiment Do you think that on the average there is a significant difference between the total KE in the x direction and that in the y direction? Support your answer. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: average of 30 KE readings (x and in the y direction) differs between the two directions by less than 10%, so they are statistically the same in both directions confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** In almost every case the average of 30 KE readings in the x and in the y direction differs between the two directions by less than 10% of either KE. This difference is not statistically significant, so we conclude that the total KE is statistically the same in bot directions. ** Your Self-Critique:ok Your Self-Critique Rating: ok ********************************************* Question: What do you think are the average velocities of the 'red' and the 'blue' particles and what do you think it is about the 'blue' particle that makes is so? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: It looks like the blue particle has a higher velocity impact from the others. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** Student answer with good analogy: I did not actually measure the velocities. the red were much faster. I would assume that the blue particle has much more mass a high velocity impact from the other particles made very little change in the blue particles velocity. Similar to a bycycle running into a Mack Truck. INSTRUCTOR NOTE: : It turns out that average kinetic energies of red and blue particles are equal, but the greater mass of the blue particle implies that it needs less v to get the same KE (which is .5 mv^2) ** Your Self-Critique: helpful Your Self-Critique Rating: ok ********************************************* Question: What do you think is the most likely velocity of the 'red' particle? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: around 5 velocity confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** If you watch the velocity display you will see that the red particles seem to average somewhere around 4 or 5 ** Your Self-Critique: ok Your Self-Critique Rating: ok ********************************************* Question: If the simulation had 100 particles, how long do you think you would have to watch the simulation before a screen with all the particles on the left-hand side of the screen would occur? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: It could be quite a while, seems like it would be a rare thing. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT ANSWER: Considering the random motion at various angles of impact.It would likely be a very rare event. INSTRUCTOR COMMENT This question requires a little fundamental probability but isn't too difficult to understand: If particle position is regarded as random the probability of a particle being on one given side of the screen is 1/2. The probability of 2 particles both being on a given side is 1/2 * 1/2. For 3 particles the probability is 1/2 * 1/2 * 1/2 = 1/8. For 100 particlles the probability is 1 / 2^100, meaning that you would expect to see this phenomenon once in 2^100 screens. If you saw 10 screens per second this would take about 4 * 10^21 years, or just about a trillion times the age of the Earth. In practical terms, then, you just wouldn't expect to see it, ever. ** Your Self-Critique: ok Your Self-Critique Rating: ok ********************************************* Question: prin phy and gen phy problem 10.36 15 cm radius duct replentishes air in 9.2 m x 5.0 m x 4.5 m room every 16 minutes; how fast is air flowing in the duct? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: volume: 9.2 m * 5.0 m * 4.5 m = 210 m ^3 ...every 16 minutes rate of 210 m^3 / (16 min * 60 sec/ min) = 210 m ^3 / (960 sec) = .22 m ^3 / sec cross-sectional area of the duct= pi r ^2 = pi * (.15 m) ^2 = .071 m ^2 speed of flow = rate of volume flow / cross-sectional area = .22 m ^3 / s / (.071 m ^2) = 3.1 m/ s, approx. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The volume of the room is 9.2 m * 5.0 m * 4.5 m = 210 m^3. This air is replentished every 16 minutes, or at a rate of 210 m^3 / (16 min * 60 sec/min) = 210 m^3 / (960 sec) = .22 m^3 / second. The cross-sectional area of the duct is pi r^2 = pi * (.15 m)^2 = .071 m^2. The speed of the air flow and the velocity of the air flow are related by rate of volume flow = cross-sectional area * speed of flow, so speed of flow = rate of volume flow / cross-sectional area = .22 m^3 / s / (.071 m^2) = 3.1 m/s, approx. Your Self-Critique:ok Your Self-Critique Rating: ok ********************************************* Question: prin phy and gen phy problem 10.40 What gauge pressure is necessary to maintain a firehose stream at an altitude of 15 m?
.......................................
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: change in rho d (rho g h) = 1000 kg /m^ 3 * 9.8 m/ s ^2 * 15 m = 147,000 N / m ^2 (the change in pressure also) the pressure inside the hose must be 147,000 N/m^2 higher than atmospheric pressure confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** We use Bernoulli's equation. Between the water in the hose before it narrows to the nozzle and the 15m altitude there is a vertical change in position of 15 m. Between the water in the hose before it narrows to the nozzle and the 15 m altitude there is a vertical change in position of 15 m. Assuming the water doesn't move all that fast before the nozzle narrows the flow, and noting that the water at the top of the stream has finally stopped moving for an instant before falling back down, we see that we know the two vertical positions and the velocities (both zero, or very nearly so) at the two points. All that is left is to calculate the pressure difference. The pressure of the water after its exit is simply atmospheric pressure, so it is fairly straightforward to calculate the pressure inside the hose using Bernoulli's equation. Assuming negligible velocity inside the hose we have change in rho g h from inside the hose to 15 m height: `d(rho g h) = 1000 kg/m^3 * 9.8 m/s^2 * 15 m = 147,000 N / m^2, approx. Noting that the velocity term .5 `rho v^2 is zero at both points, the change in pressure is `dP = - `d(rho g h) = -147,000 N/m^2. Since the pressure at the 15 m height is atmospheric, the pressure inside the hose must be 147,000 N/m^2 higher than atmospheric. ** Your Self-Critique: ok Your Self-Critique Rating: ok ********************************************* Question: Openstax: The heart of a resting adult pumps blood at a rate of 5.00 L/min. Convert this to cm^3 /s . What is this rate in m^3 /s ? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: volume of 1 liter: 10 cm * 10 cm * 10 cm = 1000 cm ^3 5 L * (1000 cm ^3 / L) / min = 5000 cm ^3 / min confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: A cube 10 cm on a side is a liter. It takes 10 layers each of 10 rows each of 10 such cubes to fill a one-meter cube. It follows that l liter is a volume of 10 cm * 10 cm * 10 cm = 1000 cm^3, and a cubic meter is a volume equivalent to 10 * 10 * 10 liters = 1000 liters. 5 L / min is therefore the same as 5 L * (1000 cm^3 / L) / min = 5000 cm^3 / min. Your Self-Critique: ok Your Self-Critique Rating:ok " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!