#$&*

course mth 151

016. Translating Arguments

*********************************************

Question: `q001. There are 6 questions in this set.

Is the following argument valid? 'If it rains, the grass will get wet. If the

grass gets wet, we'll be able to smell the wet grass. It rained yesterday.

Therefore yesterday we were able to smell the wet grass.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: yes, the argument is valid

confidence rating #$&*: very sonfident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q002. Is the following argument valid: 'If it snows, the roads will

be slippery. If the roads are slippery they'll be safer to drive on. Yesterday

it snowed. Therefore yesterday the roads were safer to drive on.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: it's a valid argument, but the statements are not true

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q003. Is the following argument valid: 'Today it will rain or it will

snow. Today it didn't rain. Therefore today it snowed.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: the argument is valid (albeit improbable)

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q004. Is the following argument valid: 'If it doesn't rain we'll have

a picnic. We don't have a picnic. Therefore it rained.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: valid argument

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q005. We can symbolize the following argument: 'If it rains, the

grass gets wet. If the grass gets wet, we'll be able to smell the wet grass. It

rained yesterday. Therefore yesterday we were able to smell the wet grass.' Let

p stand for 'It rains', q for 'the grass gets wet' and r for 'we can smell the

wet grass'. Then the first sentence forms a compound statement which we

symbolize as p -> q. Symbolize the remaining statements in the argument.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: p==>q ^ q==>r therefore r

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q006. The preceding argument was symbolized as [ (p -> q) ^ (q -> r)

^ p] -> r. Determine whether this statement is true for p, q, r truth values F F

T.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: none.

confidence rating #$&*: not confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

For these truth values p -> q is true since p is false (recall that the only way

p -> q can be false is for p to be true and q to be false), q -> r is false

since q is false, and p itself is false, therefore [ (p -> q) ^ (q -> r) ^ p] is

false. This makes [ (p -> q) ^ (q -> r) ^ p] -> r true, since the statement can

only be false if [ (p -> q) ^ (q -> r) ^ p] is true while r is false.

==============================================================================================

016. `query 16

*********************************************

Question: `qquery 3.5.5 all dogs love to bury bones. Archie doesn't.

Therefore Archie isn't a dog .

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: valid argument

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qquery 3.5.20 all chickens have a beak. All hens are chickens.

Therefore all hens have beaks.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: valid argument

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qWhen the diagram is drawn according to the premises, is it or is it

not possible for the diagram to be drawn so that it contradicts the conclusion?

If it is possible describe how.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: no it is not possible to draw diagram that contradicts conclusion

confidence rating #$&*: very comfident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q(formerly 3.5.27). The text 'dumbed down' the problems in this

section. This question is a bit challenging but is similar in nature to

assigned problems: Using Venn diagrams evaluate the following argument:{}{}All

drivers contribute to traffic congestion. All contributors to traffic

congestion make life a little worse. Some people who live in the suburbs make

life a little worse. Therefore some people who contribute to traffic congestion

live in the suburbs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: a circle for drivers and a circle for contributers. Drivers circle inside contributors circle. Contributors circle inside worse life circle. suburban drivers circle overlaps worse life circle, but not the contributers circle. Thus the argument is valid

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#$&*

course mth 151

016. Translating Arguments

*********************************************

Question: `q001. There are 6 questions in this set.

Is the following argument valid? 'If it rains, the grass will get wet. If the

grass gets wet, we'll be able to smell the wet grass. It rained yesterday.

Therefore yesterday we were able to smell the wet grass.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: yes, the argument is valid

confidence rating #$&*: very sonfident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q002. Is the following argument valid: 'If it snows, the roads will

be slippery. If the roads are slippery they'll be safer to drive on. Yesterday

it snowed. Therefore yesterday the roads were safer to drive on.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: it's a valid argument, but the statements are not true

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q003. Is the following argument valid: 'Today it will rain or it will

snow. Today it didn't rain. Therefore today it snowed.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: the argument is valid (albeit improbable)

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q004. Is the following argument valid: 'If it doesn't rain we'll have

a picnic. We don't have a picnic. Therefore it rained.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: valid argument

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q005. We can symbolize the following argument: 'If it rains, the

grass gets wet. If the grass gets wet, we'll be able to smell the wet grass. It

rained yesterday. Therefore yesterday we were able to smell the wet grass.' Let

p stand for 'It rains', q for 'the grass gets wet' and r for 'we can smell the

wet grass'. Then the first sentence forms a compound statement which we

symbolize as p -> q. Symbolize the remaining statements in the argument.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: p==>q ^ q==>r therefore r

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q006. The preceding argument was symbolized as [ (p -> q) ^ (q -> r)

^ p] -> r. Determine whether this statement is true for p, q, r truth values F F

T.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: none.

confidence rating #$&*: not confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

For these truth values p -> q is true since p is false (recall that the only way

p -> q can be false is for p to be true and q to be false), q -> r is false

since q is false, and p itself is false, therefore [ (p -> q) ^ (q -> r) ^ p] is

false. This makes [ (p -> q) ^ (q -> r) ^ p] -> r true, since the statement can

only be false if [ (p -> q) ^ (q -> r) ^ p] is true while r is false.

==============================================================================================

016. `query 16

*********************************************

Question: `qquery 3.5.5 all dogs love to bury bones. Archie doesn't.

Therefore Archie isn't a dog .

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: valid argument

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qquery 3.5.20 all chickens have a beak. All hens are chickens.

Therefore all hens have beaks.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: valid argument

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qWhen the diagram is drawn according to the premises, is it or is it

not possible for the diagram to be drawn so that it contradicts the conclusion?

If it is possible describe how.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: no it is not possible to draw diagram that contradicts conclusion

confidence rating #$&*: very comfident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q(formerly 3.5.27). The text 'dumbed down' the problems in this

section. This question is a bit challenging but is similar in nature to

assigned problems: Using Venn diagrams evaluate the following argument:{}{}All

drivers contribute to traffic congestion. All contributors to traffic

congestion make life a little worse. Some people who live in the suburbs make

life a little worse. Therefore some people who contribute to traffic congestion

live in the suburbs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: a circle for drivers and a circle for contributers. Drivers circle inside contributors circle. Contributors circle inside worse life circle. suburban drivers circle overlaps worse life circle, but not the contributers circle. Thus the argument is valid

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

#$&*

course mth 151

016. Translating Arguments

*********************************************

Question: `q001. There are 6 questions in this set.

Is the following argument valid? 'If it rains, the grass will get wet. If the

grass gets wet, we'll be able to smell the wet grass. It rained yesterday.

Therefore yesterday we were able to smell the wet grass.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: yes, the argument is valid

confidence rating #$&*: very sonfident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q002. Is the following argument valid: 'If it snows, the roads will

be slippery. If the roads are slippery they'll be safer to drive on. Yesterday

it snowed. Therefore yesterday the roads were safer to drive on.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: it's a valid argument, but the statements are not true

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q003. Is the following argument valid: 'Today it will rain or it will

snow. Today it didn't rain. Therefore today it snowed.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: the argument is valid (albeit improbable)

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q004. Is the following argument valid: 'If it doesn't rain we'll have

a picnic. We don't have a picnic. Therefore it rained.'

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: valid argument

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q005. We can symbolize the following argument: 'If it rains, the

grass gets wet. If the grass gets wet, we'll be able to smell the wet grass. It

rained yesterday. Therefore yesterday we were able to smell the wet grass.' Let

p stand for 'It rains', q for 'the grass gets wet' and r for 'we can smell the

wet grass'. Then the first sentence forms a compound statement which we

symbolize as p -> q. Symbolize the remaining statements in the argument.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: p==>q ^ q==>r therefore r

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q006. The preceding argument was symbolized as [ (p -> q) ^ (q -> r)

^ p] -> r. Determine whether this statement is true for p, q, r truth values F F

T.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: none.

confidence rating #$&*: not confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

For these truth values p -> q is true since p is false (recall that the only way

p -> q can be false is for p to be true and q to be false), q -> r is false

since q is false, and p itself is false, therefore [ (p -> q) ^ (q -> r) ^ p] is

false. This makes [ (p -> q) ^ (q -> r) ^ p] -> r true, since the statement can

only be false if [ (p -> q) ^ (q -> r) ^ p] is true while r is false.

==============================================================================================

016. `query 16

*********************************************

Question: `qquery 3.5.5 all dogs love to bury bones. Archie doesn't.

Therefore Archie isn't a dog .

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: valid argument

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qquery 3.5.20 all chickens have a beak. All hens are chickens.

Therefore all hens have beaks.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: valid argument

confidence rating #$&*: very confident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qWhen the diagram is drawn according to the premises, is it or is it

not possible for the diagram to be drawn so that it contradicts the conclusion?

If it is possible describe how.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: no it is not possible to draw diagram that contradicts conclusion

confidence rating #$&*: very comfident

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q(formerly 3.5.27). The text 'dumbed down' the problems in this

section. This question is a bit challenging but is similar in nature to

assigned problems: Using Venn diagrams evaluate the following argument:{}{}All

drivers contribute to traffic congestion. All contributors to traffic

congestion make life a little worse. Some people who live in the suburbs make

life a little worse. Therefore some people who contribute to traffic congestion

live in the suburbs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: a circle for drivers and a circle for contributers. Drivers circle inside contributors circle. Contributors circle inside worse life circle. suburban drivers circle overlaps worse life circle, but not the contributers circle. Thus the argument is valid

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

&#Your work looks good. Let me know if you have any questions. &#