#$&*
course mth 151
016. Translating Arguments
*********************************************
Question: `q001. There are 6 questions in this set.
Is the following argument valid? 'If it rains, the grass will get wet. If the
grass gets wet, we'll be able to smell the wet grass. It rained yesterday.
Therefore yesterday we were able to smell the wet grass.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: yes, the argument is valid
confidence rating #$&*: very sonfident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q002. Is the following argument valid: 'If it snows, the roads will
be slippery. If the roads are slippery they'll be safer to drive on. Yesterday
it snowed. Therefore yesterday the roads were safer to drive on.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: it's a valid argument, but the statements are not true
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q003. Is the following argument valid: 'Today it will rain or it will
snow. Today it didn't rain. Therefore today it snowed.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: the argument is valid (albeit improbable)
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q004. Is the following argument valid: 'If it doesn't rain we'll have
a picnic. We don't have a picnic. Therefore it rained.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: valid argument
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q005. We can symbolize the following argument: 'If it rains, the
grass gets wet. If the grass gets wet, we'll be able to smell the wet grass. It
rained yesterday. Therefore yesterday we were able to smell the wet grass.' Let
p stand for 'It rains', q for 'the grass gets wet' and r for 'we can smell the
wet grass'. Then the first sentence forms a compound statement which we
symbolize as p -> q. Symbolize the remaining statements in the argument.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: p==>q ^ q==>r therefore r
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q006. The preceding argument was symbolized as [ (p -> q) ^ (q -> r)
^ p] -> r. Determine whether this statement is true for p, q, r truth values F F
T.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: none.
confidence rating #$&*: not confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
For these truth values p -> q is true since p is false (recall that the only way
p -> q can be false is for p to be true and q to be false), q -> r is false
since q is false, and p itself is false, therefore [ (p -> q) ^ (q -> r) ^ p] is
false. This makes [ (p -> q) ^ (q -> r) ^ p] -> r true, since the statement can
only be false if [ (p -> q) ^ (q -> r) ^ p] is true while r is false.
==============================================================================================
016. `query 16
*********************************************
Question: `qquery 3.5.5 all dogs love to bury bones. Archie doesn't.
Therefore Archie isn't a dog .
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: valid argument
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qquery 3.5.20 all chickens have a beak. All hens are chickens.
Therefore all hens have beaks.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: valid argument
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qWhen the diagram is drawn according to the premises, is it or is it
not possible for the diagram to be drawn so that it contradicts the conclusion?
If it is possible describe how.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: no it is not possible to draw diagram that contradicts conclusion
confidence rating #$&*: very comfident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q(formerly 3.5.27). The text 'dumbed down' the problems in this
section. This question is a bit challenging but is similar in nature to
assigned problems: Using Venn diagrams evaluate the following argument:{}{}All
drivers contribute to traffic congestion. All contributors to traffic
congestion make life a little worse. Some people who live in the suburbs make
life a little worse. Therefore some people who contribute to traffic congestion
live in the suburbs.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: a circle for drivers and a circle for contributers. Drivers circle inside contributors circle. Contributors circle inside worse life circle. suburban drivers circle overlaps worse life circle, but not the contributers circle. Thus the argument is valid
"
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
#$&*
course mth 151
016. Translating Arguments
*********************************************
Question: `q001. There are 6 questions in this set.
Is the following argument valid? 'If it rains, the grass will get wet. If the
grass gets wet, we'll be able to smell the wet grass. It rained yesterday.
Therefore yesterday we were able to smell the wet grass.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: yes, the argument is valid
confidence rating #$&*: very sonfident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q002. Is the following argument valid: 'If it snows, the roads will
be slippery. If the roads are slippery they'll be safer to drive on. Yesterday
it snowed. Therefore yesterday the roads were safer to drive on.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: it's a valid argument, but the statements are not true
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q003. Is the following argument valid: 'Today it will rain or it will
snow. Today it didn't rain. Therefore today it snowed.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: the argument is valid (albeit improbable)
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q004. Is the following argument valid: 'If it doesn't rain we'll have
a picnic. We don't have a picnic. Therefore it rained.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: valid argument
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q005. We can symbolize the following argument: 'If it rains, the
grass gets wet. If the grass gets wet, we'll be able to smell the wet grass. It
rained yesterday. Therefore yesterday we were able to smell the wet grass.' Let
p stand for 'It rains', q for 'the grass gets wet' and r for 'we can smell the
wet grass'. Then the first sentence forms a compound statement which we
symbolize as p -> q. Symbolize the remaining statements in the argument.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: p==>q ^ q==>r therefore r
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q006. The preceding argument was symbolized as [ (p -> q) ^ (q -> r)
^ p] -> r. Determine whether this statement is true for p, q, r truth values F F
T.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: none.
confidence rating #$&*: not confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
For these truth values p -> q is true since p is false (recall that the only way
p -> q can be false is for p to be true and q to be false), q -> r is false
since q is false, and p itself is false, therefore [ (p -> q) ^ (q -> r) ^ p] is
false. This makes [ (p -> q) ^ (q -> r) ^ p] -> r true, since the statement can
only be false if [ (p -> q) ^ (q -> r) ^ p] is true while r is false.
==============================================================================================
016. `query 16
*********************************************
Question: `qquery 3.5.5 all dogs love to bury bones. Archie doesn't.
Therefore Archie isn't a dog .
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: valid argument
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qquery 3.5.20 all chickens have a beak. All hens are chickens.
Therefore all hens have beaks.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: valid argument
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qWhen the diagram is drawn according to the premises, is it or is it
not possible for the diagram to be drawn so that it contradicts the conclusion?
If it is possible describe how.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: no it is not possible to draw diagram that contradicts conclusion
confidence rating #$&*: very comfident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q(formerly 3.5.27). The text 'dumbed down' the problems in this
section. This question is a bit challenging but is similar in nature to
assigned problems: Using Venn diagrams evaluate the following argument:{}{}All
drivers contribute to traffic congestion. All contributors to traffic
congestion make life a little worse. Some people who live in the suburbs make
life a little worse. Therefore some people who contribute to traffic congestion
live in the suburbs.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: a circle for drivers and a circle for contributers. Drivers circle inside contributors circle. Contributors circle inside worse life circle. suburban drivers circle overlaps worse life circle, but not the contributers circle. Thus the argument is valid
"
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
#*&!
#$&*
course mth 151
016. Translating Arguments
*********************************************
Question: `q001. There are 6 questions in this set.
Is the following argument valid? 'If it rains, the grass will get wet. If the
grass gets wet, we'll be able to smell the wet grass. It rained yesterday.
Therefore yesterday we were able to smell the wet grass.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: yes, the argument is valid
confidence rating #$&*: very sonfident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q002. Is the following argument valid: 'If it snows, the roads will
be slippery. If the roads are slippery they'll be safer to drive on. Yesterday
it snowed. Therefore yesterday the roads were safer to drive on.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: it's a valid argument, but the statements are not true
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q003. Is the following argument valid: 'Today it will rain or it will
snow. Today it didn't rain. Therefore today it snowed.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: the argument is valid (albeit improbable)
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q004. Is the following argument valid: 'If it doesn't rain we'll have
a picnic. We don't have a picnic. Therefore it rained.'
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: valid argument
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q005. We can symbolize the following argument: 'If it rains, the
grass gets wet. If the grass gets wet, we'll be able to smell the wet grass. It
rained yesterday. Therefore yesterday we were able to smell the wet grass.' Let
p stand for 'It rains', q for 'the grass gets wet' and r for 'we can smell the
wet grass'. Then the first sentence forms a compound statement which we
symbolize as p -> q. Symbolize the remaining statements in the argument.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: p==>q ^ q==>r therefore r
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q006. The preceding argument was symbolized as [ (p -> q) ^ (q -> r)
^ p] -> r. Determine whether this statement is true for p, q, r truth values F F
T.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: none.
confidence rating #$&*: not confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
For these truth values p -> q is true since p is false (recall that the only way
p -> q can be false is for p to be true and q to be false), q -> r is false
since q is false, and p itself is false, therefore [ (p -> q) ^ (q -> r) ^ p] is
false. This makes [ (p -> q) ^ (q -> r) ^ p] -> r true, since the statement can
only be false if [ (p -> q) ^ (q -> r) ^ p] is true while r is false.
==============================================================================================
016. `query 16
*********************************************
Question: `qquery 3.5.5 all dogs love to bury bones. Archie doesn't.
Therefore Archie isn't a dog .
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: valid argument
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qquery 3.5.20 all chickens have a beak. All hens are chickens.
Therefore all hens have beaks.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: valid argument
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qWhen the diagram is drawn according to the premises, is it or is it
not possible for the diagram to be drawn so that it contradicts the conclusion?
If it is possible describe how.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: no it is not possible to draw diagram that contradicts conclusion
confidence rating #$&*: very comfident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q(formerly 3.5.27). The text 'dumbed down' the problems in this
section. This question is a bit challenging but is similar in nature to
assigned problems: Using Venn diagrams evaluate the following argument:{}{}All
drivers contribute to traffic congestion. All contributors to traffic
congestion make life a little worse. Some people who live in the suburbs make
life a little worse. Therefore some people who contribute to traffic congestion
live in the suburbs.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: a circle for drivers and a circle for contributers. Drivers circle inside contributors circle. Contributors circle inside worse life circle. suburban drivers circle overlaps worse life circle, but not the contributers circle. Thus the argument is valid
"
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
#*&!#*&!
Your work looks good. Let me know if you have any questions.