#$&*
course mth 151
Assignment 4.5
022. Groups
*********************************************
Question: `q001. There are nine questions in this assignment.
A group is a set and an operation on that set which has the properties of closure, associativity, identity and inverse. The set {1, 2} on the operation @ of Assignment 21, defined by x @ y = remainder when the product x * y is divided by 3, does have the associative property. Is the set {1, 2} a group on @?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: Yes
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q002. Which of the properties closure, identity, commutativity, inverse, does the standard addition operation + have on the set {-1, 0, 1}?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: identity, commutativity and inverse
confidence rating #$&*: very sure
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q003. Does the operation * of standard multiplication on the set {-1, 0, 1} have the properties of closure, identity and inverse?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: it does have identity and closure
confidence rating #$&*: fairly confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q004. Does the operation * of standard multiplication on the set {-1, 1} have the properties of closure, identity and inverse?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: yes, it has all three - closure, inverse and identity
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q005. Is the operation * of standard multiplication on the set {-1, 1} a group. Note that the operation does have the property of associativity.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: yes, it is a group
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q006. We've referred to the property of associativity, but we haven't yet defined it. Associativity essentially means that when an operation (technically a binary operation, but don't worry about that a terminology at this point) is performed on three elements of a set, for example a + b + c, it doesn't matter whether we first perform a + b then add c, calculating (a + b) + c, or group the b and c so we calculate a + (b + c). If + means addition on real numbers, show that (3 + 4) + 5 = 3 + ( 4 + 5).
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
(3 + 4) + 5 = 7+5 = 12
3+ ( 4 + 5) = 3 + 9 = 12
This has associativity
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q007. Verify that for the operation @ defined on {0, 1, 2} by x @ y = remainder when x * y is double then divided by 3, we have 2 @ (0 @ 1) = ( 2 @ 0 ) @ 1.Verify also that (2 @ 1) @ 1 = 2 @ ( 1 @ 1).
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
A)0@1=0 ==> 2@(0@1) = 2@0 or 0
2@0=0 ==> (2@0)@1 = 0@1 or 0
THerefore
2@(0@1) = (2@0)@1
B)(2@1)=1 ==>(2@1)@1=1@ or 1
1@1=2==>2@(1@1)=2@2=2
Therefore
(2@1)@1 = 2@(1@1)
confidence rating #$&*: confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q008. Does the result of the preceding exercise prove that the @ operation is associative on the set {0, 1, 2}?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: Yes
confidence rating #$&*: very condifent
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q009. Earlier we verified the properties of closure, identity and inverse for the multiplication operation * on the set {-1, 1}. We asserted that this operation was associative, so that this set with this operation forms a group.It would still be too time-consuming to prove that * is associative on {-1, 1}, but list the possible combinations of a, b, c from the set and verify associativity for any three of them.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
(-1, -1, -1) (-1, -1, 1) (-1, 1, -1)
A(-1 * -1) * -1 = -1
B(-1 * -1) * 1 = -1
C (-1 * 1) * -1 = -1
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
=======================================================================================================================
022. `query 22
*********************************************
Question: `q4.5.9 {-1,0,1} group on multiplication?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: not a group on multiplicaition
confidence rating #$&*: very confident
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `q4.5.25 verify (NT)R = N(TR)
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
confidence rating #$&*:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
`a** From the table
(NT)R= V R = M
and
N(TR)= N P = M
This verifies the identity. **
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary):
------------------------------------------------
Self-critique Rating:
*********************************************
Question: `qquery 4.5.33 inverse of T
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: T is it's own inverse
*********************************************
Question: `q4.5.42. Explain what property is gained when the system of integers is extended to the system of rational numbers.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: inverse
confidence rating #$&*: not confident"
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
*********************************************
Question: `qquery 4.5.33 inverse of T
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: T is it's own inverse
*********************************************
Question: `q4.5.42. Explain what property is gained when the system of integers is extended to the system of rational numbers.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution: inverse
confidence rating #$&*: not confident"
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
#*&!
@& I'll be glad to respond to self-critiques accompanied by the given solutions and specific statements about what you do and do not understand. *@