course phy121 ŽäóÁ^»„Á«ÌÖàüD‰ˆüŸ¡“[§assignment #014
......!!!!!!!!...................................
13:53:48 set 3 intro prob sets If you calculate the acceleration on a mass m which starts from rest under the influence of a constant net force Fnet and multiply by a time interval `dt what do you get? How far does the object travel during this time and what velocity does it attain? What do you get when you multiply the net force by the distance traveled? What kinetic energy does the object attain?
......!!!!!!!!...................................
RESPONSE --> a * `dt = `ds or (F / m) * `dt = `ds sqrt[(F`ds)/(.5m)] = v Work or KE Fnet * `ds = KE confidence assessment: 2
.................................................
......!!!!!!!!...................................
13:54:07 **STUDENT ANSWER AND INSTRUCTOR COMMENTS: a*'dt = the final velocity if V0=0. to get the change in position you would divide the final velocity(since V0=0) by 2 to get the average velocity and then multiply that by the 'dt to get the units of distance traveled. Multiply that by the 'dt to get the units of distance traveled. It attains a Vf of a*'dt as shown above because V0=0, if V0 was not zero you would have to add that to the a*'dt to get the final velocity. When you multiply Fnet by 'dt you get the same thing you would get if you multiply the mass by the change in velocity(which in this case is the same as the final velocity). This is the change in momentum. The Kinetic Energy Attained is the forcenet multiplied by the change in time. a = Fnet / m. So a `dt = Fnet / m * `dt = vf. The object travels distance `ds = v0 `dt + .5 a `dt^2 = .5 Fnet / m * `dt^2. When we multiply Fnet * `ds you get Fnet * ( .5 Fnet / m * `dt^2) = .5 Fnet^2 `dt^2 / m. The KE attained is .5 m vf^2 = .5 m * ( Fnet / m * `dt)^2 = .5 Fnet^2 / m * `dt^2. Fnet * `ds is equal to the KE attained. The expression for the average velocity would be [ (v0 + a * `dt) + v0 ] / 2 = v0 + 1/2 a `dt so the displacement would be (v0 + 1/2 a `dt) * `dt = v0 `dt + 1/2 a `dt^2. This is equal to (v0 `dt + 1/2 a `dt^2) * Fnet = (v0 `dt + 1/2 a `dt^2) * m a , since Fnet = m a. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
......!!!!!!!!...................................
13:56:41 Define the relationship between the work done by a system against nonconservative forces, the work done against conservative forces and the change in the KE of the system. How does PE come into this relationship?
......!!!!!!!!...................................
RESPONSE --> `dWnoncons + `dWcons = -PE `Wcons = KE confidence assessment: 2
.................................................
......!!!!!!!!...................................
13:58:09 ** The work done by the system against all forces will decrease the KE by an equal amount. If some of the forces are conservative, then work done against them increases the PE and if PE later decreases this work will be recovered. Work done against non-conservative forces is not stored and cannot be recovered. STUDENT RESPONSE WITH INSTRUCTOR COMMENTARY: The work done by a system against nonconservative forces is the work done to overcome friction in a system- which means energy is dissipated in the form of thermal energy into the 'atmosphere.' Good. Friction is a nonconservative force. However there are other nonconservative forces--e.g., you could be exerting a force on the system using your muscles, and that force could be helping or hindering the system. A rocket engine would also be exerting a nonconservative force, as would just about any engine. These forces would be nonconservative since once the work is done it can't be recovered. STUDENT RESPONSE WITH INSTRUCTOR COMMENTS: The work done by a system against conservative forces is like the work to overcome the mass being pulled by gravity. INSTRUCTOR COMMENT: not bad; more generally work done against conservative force is work that is conserved and can later be recovered in the form of mechanical energy **
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
......!!!!!!!!...................................
14:00:10 class notes: rubber band and rail How does the work done to stretch the rubber band compare to the work done by the rubber band on the rail, and how does the latter compare to the work done by the rail against friction from release of the rubber band to the rail coming to rest?
......!!!!!!!!...................................
RESPONSE --> The work done to strech the band will (idealy) be transfered into the rail when the rubber band is released. At the point where the rubber band has no tension on it, the rail will not contain the KE that had been stored in the rubber band. Friction will then disapate or work against this KE until its has been used up and the rail stops. confidence assessment:
.................................................
......!!!!!!!!...................................
14:01:53 ** The work done to stretch the rubber band would in an ideal situation be available when the rubber band is released. Assuming that the only forces acting on the rail are friction and the force exerted by the rubber band, the work done by the rail against friction, up through the instant the rail stops, will equal the work done by the rubber band on the rail. Note that in reality there is some heating and cooling of the rubber band, so some of the energy gets lost and the rubber band ends up doing less work on the rail than the work required to stretch it. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
......!!!!!!!!...................................
14:03:33 Why should the distance traveled by the rail be proportional to the F * `ds total for the rubber band?
......!!!!!!!!...................................
RESPONSE --> It will be proportional due to the fact that the more distance the rubber band is streched, the more KE it stores. When the rubber band stores more energy, it can then release more energy on the rail, increasing its `ds. confidence assessment: 2
.................................................
......!!!!!!!!...................................
14:03:59 ** The F `ds total of the rail when it is accelerated by the rubber band is equal Fave `ds, which is equal to to m * aAve * `ds. Here aAve is the average acceleration of the rail by the rubber band. 2 aAve `ds = vf^2 - v0^2 by the fourth equation of motion. So the F `ds total is proportional to the change in v^2. The rail is then stopped by the frictional force f; since f `ds is equal to m * a * `ds, where a is the acceleration of the sliding rail, it follows that f `ds is also proportional to the change in v^2. Change in v^2 under the influence of the rubber band (rest to max vel) is equal and opposite to the change in v^2 while sliding against friction (max vel back to rest), so work f `ds done by friction must be equal and opposite to F `ds. This ignores the small work done by friction while the rubber band is accelerating the rail. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................