#$&* course Mth 279 3/13 6 Section 2.4.*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. What annual rate of return is required if an investment of $1000 is to reach $3000 in 15 years? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: using our origional equation. 3,000 = 1,000(1+r)^15 solve for r take ln of both sides. ln3 / 15 = ln(1+r) ln3 / 15 = 0.073241 raise it by e. e^(0.073241) = 1+r r = 0.076 or 7.6% annual rate assuming compounded annually. but it makes very little difference confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. A bacteria colony has a constant growth rate. The population grows from 40 000 to 100 000 in 72 hours. How much longer will it take the population to grow to 200 000? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: using the same equation as always. 100,000 = 40,000(1+r)^72t 2.5 = (1+r)^72t take ln of both sides ln2.5 = 72ln(1+r) r = 1.28% now to find how long it takes that 100k to grow to 200k 200k = 100k(1+.0128)^t like always, solve for t by taking ln of both sides to find simply that t = 54.92 hrs confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. A population experiences growth rate k and migration rate M, meaning that when the population is P the rate at which new members are added is k P, but the rate at they enter or leave the population is M (positive M implies migration into the population, negative M implies migration out of the population). This results in the differential equation dP/dt = k P + M. Given initial condition P = P_0, solve this equation for the population function P(t). **** dP(t)/dt / P(t) = K + M integrate both sides wrt t
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. Suppose that the migration in the preceding occurs all at once, annually, in such a way that at the end of the year, the population returns to the same level as that of the previous year. How many individuals migrate away each year? **** P(t) = Ce^-kt - (M / k) Just the opposite of the growth rate if it goes back to the same level. I get the concept, but I'm not 100% sure my formula is correct. #$&* How does this compare to the migration rate required to achieve a steady population, as determined in the preceding question? **** equal and opposite, where M is negative M and growth rate is the same just opposite. #$&* YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"